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CHAPTER 1. GENERAL INTRODUCTION AND EXPERIMENTAL METHODS 

Introduction 

Exploration of the alkali metal / alkaline-earth metal / heavy tetrel (Sn or Pb) systems 

has revealed a vast array of new chemistry and novel structure types. The structures and 

properties of these new materials have been studied in an attempt to understand the chemistry 

of these and other related systems. Most of these materials possess a metallic luster 

indicative of an intermetallic compound, which is correct in some cases, but upon further 

analysis, a majority of these compounds exhibit closed-shell bonding along with the 

corresponding semiconducting and diamagnetic properties. The latter properties are more 

consistent with valence (salt-like) compounds and thus may be considered as a link between 

valence and intermetallic structures. The latter category of materials has become known as 

Zintl phases' and traditionally formed between elements of type A, where A = alkali-metal, 

alkaline-earth, or rare-earth metals, and of type B, where B = group 13, 14, or 15 elements. 

Zintl phases are traditionally viewed as compounds that have discrete isolated anions or 

anionic frameworks that are held together by 2-center-2-electron bonds. Some of the more 

recently examined heavy tetrel clusters exhibit delocalized bonding that would be considered 

deficient by the 2-center-2-electron bond scheme provided by the Zintl-Klemm 

classification,2 but they still possess a closed shell configuration, identical in characteristics 

to those attributed to deltahedral polyboranes whose electronic requirements were first 

described via Wade's rules.3 

The electron counting rules developed by Wade have become an incredibly useful 

tool for the electron counting in boranes and carboranes. These rules state that the number of 
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skeletal electrons required for bonding in a c/oso-cluster depends only on the number of 

vertices (n) in the structure and is equal to 2n + 2. This sum also remains the same, even 

when vertices are removed, i.e. 2n + 4, and 2n + 6 for the corresponding (n - 1) nido- and (n 

— 2) arachno- types. 

The group 14 elements present an interesting problem in the search for novel clusters. 

The c/aso-deltahedron from a tetrel element (Si, Ge, Sn, or Pb) would have a total charge of -

2 for n independent vertices. The problem is obvious, only two alkali metal cations are now 

needed for charge balance and, therefore, not enough of them may be present to pack around 

the clusters (especially larger ones), and separate them in the solid. 

A variety of solutions to this problem present themselves. One of the first is the 

formation of nido- or aracA/io-deltahedra of small clusters. This would give an overall 

charge of 4- and 6- respectively, and allow for 4 or 6 A+ cations to separate them. One 

example of this is the nido-TL»4" (Tt = Si, Ge, Pb) known to form with all alkali metals in a 

simple one-to-one binary ATt (A = Na-Cs; Tt = Si-Pb).4 The use of larger monovalent 

cations, such as K, Rb, or Cs, has been used to isolate the closo-Ttç4*.5 This work reports one 

such example of a Tt9
4" cluster phase, Rb4Pb9. 

It is, of course, possible to produce new Zintl compounds of the tetrel elements 

without resorting to cluster formations. Examples in binary systems would include such 

phases as Ca^Sn^ SrsiPbao, and YbsiPbao6 These phases possess isolated M4* atoms, M26" 

dimers, and linear Ms12* pentamers (M = Sn or Pb). Another example of a binary Zintl phase 

lacking recognizable clusters of the tetrel elements is NaySnu, which has a complex three-

dimensional structure built from mainly 4-bonded tin atoms in interbonded pentagons.7 Also, 

it is possible to isolate tetrel clusters with relatively few cations, as was demonstrated in the 
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Zintl phase BaGez which contains Ge/" tetrahedra separated by Ba cations in the BaSia 

structure type.8 

It has been discovered that structural stability can be "tuned" by using a mixture of 

alkali-metal cations to obtain phases that are not available in ordinary binary systems. The 

use of mixed cations allows one to tune for electron count and packing requirements 

simultaneously. This was exploited initially in the heavier trie! (In, Tl) systems to obtain 

new phases.9 Recently this has been expanded to include the heavier tetrels (Sn or Pb) with 

such examples as Ca2-xMgxTt (Tt = Sn, Pb),10 Ca6.2Mg3.gSn7,11 AjI^Sng (A = K, Rb),12 

RbLi7Geg,13 and Bai&Na204Sn3i0, the last of which contains an isolated gigantic tin cluster of 

56 atoms making it the largest known main group cluster, besides fullerenes, in the solid 

state.14 Interestingly, there is only one reported case known for lead with mixed alkali-

metals, CsioKtiPbae.15 

Another method at obtaining novel cluster materials is to synthesize the clusters from 

solution in which large countercations, such as crypt-(A)+ (A = alkali-metal; crypt = 4,7,13, 

16, 21, 24-hexaoxa-l, 10-diazobicyclo-(8,8,8)hexacosane) are available. Reported cluster 

examples from cryptated salts include the c/oso-M5
2",16 zzzV/o-Mg4",17 c/oso-M93"(M = Ge, Sn, 

Pb),18 closo-Ge92*,19 and c/oso-Geio2".20 

The introduction of a third element, particularly an electron poorer one, may aid in 

the formation of clusters by increasing the number of counter cations required for closed 

shell bonding. The group 13 elements at first glance seem ideal for this purpose. These 

elements are frequently called electron poor-elements, because they only have one p-electron 

per atom and have to share it with as many atoms as possible to achieve good bonding. This, 

of course, is a prerequisite for cluster bonding. The combination of Group 13/14 elements 
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could give rise to unknown heteroatomic clusters that could adequately be separated by 

cations like those of the alkali metals and has been somewhat successful in solution 

chemistry giving rise to TlSn8
3* and TlSnç3" 21 Other such examples in "neat" systems would 

include CasIngSna.22 This work reports another "neat" example AglnPbg (A = K, Rb) which 

has InPbg5" clusters consisting of two Pb4 tetrahedra linked by a /le-In atom in a D3d 

arrangement. 

Attempts to include group 15 elements in a heteroatomic cluster present their own 

difficulties. These elements are relatively rich in electrons compared to the triels, and only 

require 3 bonds to gain an octet. These elements readily form nondeltahedral clusters where 

each vertex is 2- or 3-bonded like Bi4
2" and Sb?3*.23-24 Wade's rules are generally not valid for 

such formations because they contain simple 2-center-2-electron bonds. By mixing Group 

14/15 elements it may be conceivable to produce small clusters of the arachno or higher 

classes of deltahedra. This has led to the formation of KsAsjPba, a new phase that consists of 

AsaPba crown-shaped clusters that form 1-dimensional chains via intercluster bonds. 

The stabilities of ionic cluster salts in the solid are often influenced by packing as 

well as electronic effects. The modification of cation or anions along with the formal charge 

on either can lead to new structure types, although typically, this often leads to apparent 

instability of a cluster species. This work reports on a series of compounds (SrçSns, BaaPbs, 

and LaaSns) in the PuaPds structure type that contains varying numbers of nominally free 

metal electrons beyond the requirements imposed by the Tt/" clusters. These clusters behave 

differently than what would be expected in molecular systems, because the free electrons in 

the later would normally further reduce the clusters present. The limited number of cations 
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and the excess electrons also allow for appreciable intercluster interactions that are mediated 

by the cations. 

Exploratory synthesis is, and will continue to be, an important aspect of the pursuit of 

novel compounds. The continual discovery of new cluster formations and unusual 

properties, some of which are reported herein, provide an incentive for new synthetic work. 

The best results are often unexpected and arrive from plausible, but incorrect ideas about the 

structures one can target, such as the attempted substitution of In into a Pb/" cluster that gave 

rise to the new phase KjInPbg. 

Experimental Techniques 

Starting Materials. Almost all of the compounds reported were prepared starting 

with stoichiometric amounts of the elements except for a few instances in which a binary 

hydride were loaded. Elemental sodium (Fisher, 99.9%) in the form of a large block 

(approximately 5 x 5 x 10 cm) that was stored in an gas-tight mason jar inside of a Nz-filled 

glove box. The surface of the block became oxidized and the oxidized part was removed 

with a scalpel. The other alkali-metals were used as received from the manufacturer, 

potassium (Aesar, 99.95%, Strem 99.9995%), rubidium (Aesar 99.95%, Strem 99.999+%), 

and cesium (Aesar 99.95%). Small ampoules of these metals were stored inside mason jars 

that had an excess of alkali-metal present to act as a getter. The alkaline-earth metals used 

were strontium (Aesar, distilled, 99.8%) and barium (Aesar distilled, 99.8%). The rare earth-

metal lanthanum (Ames Lab, 99.99%) was obtained as thin sheets and was stored inside of a 

N%- or He-filled glove box. The cold-rolled sheets were scraped with a scalpel to remove any 

accumulated oxide coating before use. The other main group elements used included lead 
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(Aesar, 99.9999%), tin (Aesar 99.99%), indium (Aesar, 99.99%), and arsenic (Aldrich, 

99.9999%). 

Inert Atmospheres. The air-sensitive nature of most starting materials and of all the 

products required the use of several specialized procedures. All reactions were loaded in 

either a N2- or He-filled glove-box from Vacuum Atmospheres Co., model PC-1 or model 

DLX-001-S-P respectively. Product containers were opened in either a Blickman Na-filled 

box or one of the glove-boxes mentioned above. The atmosphere was maintained in all three 

glove-boxes by a Vacuum Atmospheres DRI-TRAIN regeneration system, model HE-493. 

The moisture and oxygen content of the glove boxes were maintained at <1 ppm by volume 

by the circulation of the inert gas through an activated Cu/molecular sieve catalyst. The 

moisture levels were monitored via a Panametrics Systems 3 A hygrometer. All of the 

starting materials were handled either in glass petri dishes or in molybdenum weighing boats 

while inside of the glove boxes. 

Reaction Vessels. The reactivity of the materials required the use of 3/8" tantalum or 

niobium tubing. The tubing was cut into approximately 1.25-2.00" lengths and cleaned with 

an acid mixture containing (by volume) 55% sulfuric acid (95% w), 25% nitric acid (70% w), 

and 20% hydrofluoric acid (49% w) and then rinsed with distilled water. The tubes were 

then allowed to air dry at which point each tube had one end crimped shut in a vise and 

sealed by arc welding. The air-cooled welder was evacuated with a rough pump and back 

filled with an argon atmosphere before welding. 

Reaction Loading. The starting materials were placed into the prepared niobium or 

tantalum tubing inside of a glove-box. The open end of the tube was crimped shut and 

placed inside of a capped glass container which was then covered with parafilm for transport 
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to the arc welder. The time outside of the inert environment of the glove-box was minimized 

(<5 minutes) to reduce the possibility of contamination. The sample tubes were then arc 

welded as previously described. In order to protect the sealed tubes from oxidation at the 

high reaction temperatures, the sample tubes were cleaned in a weak acid solution before 

being enclosed in a silica jacket. The silica jacket was then evacuated with the aid of a 

mercury diffusion pump. The jacket was heated with a natural gas/oxygen fueled torch to 

remove moisture from the silica and then to seal it. The vacuum level in the silica jacket was 

checked with a tesla coil. The jacket was sealed when no discharge was observed. 

Heating. The reactions were then generally carried out in a Marshal tube furnace for 

temperatures < 1000° C. The temperatures were monitored by J-type thermocouples and 

adjusted by programmable Eurotherm controllers. In order to insure a complete reaction, the 

tube furnaces were tilted approximately 25° to collect all of the materials at one end of the 

tantalum tube. A vacuum furnace from Thermal Technology Inc., Model # 100-2560-FP20, 

was used for temperatures > 1000 °C and/or a dynamic vacuum to achieve the desired 

phases. A Eurotherm programmable temperature controller and an Aeropak T/C 

thermocouple were used to control and monitor the respective temperature cycles. 

Binary Metal Hydride Preparation. Binary metal hydrides were prepared by the 

direct reactions between hydrogen gas and the metals. Small pieces of the metal were placed 

in a cleaned tantalum tube that was then crimped and welded shut as described previously. 

The tantalum tube was then placed inside a fused silica vessel connected to a vacuum line. 

The reaction vessel was then evacuated three times and filled with Hz gas before initiating 

the reaction. Each metal was slowly heated to a temperature ranging between 400° and 500° 

C at a constant hydrogen pressure of approximately 600 to 700 torn The specific conditions 
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to hydrogenate the metal were based upon their reported AH* decomposition isotherms.25 

The start of the reaction was recognized by a 100+ torr drop in the gas pressure, and was 

considered finished when an increase in temperature was followed by an increase in pressure. 

The binary products were annealed under Hz at about 20 to 50°C below the maximum 

reaction temperature for 24 hours. Identification was made by Guinier x-ray powder pattern, 

and the cell dimensions of the prepared hydrides agreed with the reported values.26 All 

products were single phase. 

Product Identification. Completed reactions were opened inside a nitrogen-filled 

glove box that had an optical microscope (objective removed) mounted on the plexiglass top. 

The reaction tube was opened by cutting off one of the welded ends with a tube cutter. The 

products were then poured out of the tube or scraped from the tubing walls with a spatula 

into a glass Petri dish. The sample was then visually inspected for morphology, color, 

brittleness, crystallinity, and whether the sample was sticky because of any excess of alkali 

metal. If crystals suitable for single crystal x-ray diffraction experiments appeared, they 

were sealed into 0.3 mm diameter capillary tubes with grease, and later sealed with a gas 

microtorch outside the glove box. The remaining sample was then ground into chunks and 

powder using a mortar and pestle in the glove box. The majority of the ground sample was 

then later sealed in a evacuated Pyrex tube using a natural gas/oxygen torch, while a small 

amount was separated from the bulk and mixed with NIST (SRM-640b) standard silicon. 

The latter sample was fixed between two sheets of aluminized polyester film, (from MPI 

Outdoors) by means of a thin centered film of Apiezon L vacuum grease which also sealed 

the outer edge of the sheets to prevent decomposition of the air sensitive products.27 This 

was done to reduce the otherwise frequent appearance of broad patterns for elemental Pb, Sn, 
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or In from subsequent accidental oxidation of the sample surface. The foil wrapped sample 

was put into a closed container and transferred to a rotating sample holder inside an X-ray 

powder camera. The Guinier cameras, Enraf-Nonius model FR552, utilized monochromated 

Cu Kofi radiation (X= 1.540562 À), with the samples held under continuous rough pump 

evacuation (~150 mTorr). The X-ray powder diffraction patterns were recorded with Kodak 

BIOMAX MR Scientific Imaging Film. 

The resulting patterns were visually compared against calculated patterns of known 

elements and compounds (or hypothetical compounds of known structure types). The 

calculated powder patterns were obtained through the use of the program POWDER28 on a 

VAX computing system or a MS-DOS native version.29 The yield of specific phases could 

be qualitatively estimated based on relative intensities of the strongest diffraction lines 

through comparisons of the experimental and calculated patterns. This method requires care, 

because differing symmetries, preferred orientation, sampling, and other factors can 

contribute to the relative intensities observed. 

An LS20 Line Scanner from KEJ Instruments allowed for a more precise 

measurement of line positions and intensities. The program SCANPI830 was used in the 

digitizing process to adjust the data to account the individual camera and film variations and 

the Si standardization. The process of matching and refining the experimental diffraction 

lines to the theoretical model was done in one of two ways. The first method uses the 

program COMPARE31 to match the experimental and theoretical patterns. The lattice 

constants and associated errors were then calculated from the former via least squares 

refinement using the program LATT.32 The other method was to use the program U-FIT 

VI.3 to carry out the matching and refining process.33 
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Single Crystal X-ray Diffraction. After identifying an unknown in a powder 

pattern, the quality of single crystals obtained was evaluated through Laue photographs on 

either a Weissenburg or precession camera obtained with Cu Koti radiation. The best crystals 

were selected for further study and were transferred to one of two difïractometers, a Rigaku 

AFC6R with a rotating anode, or a Bruker CCD Smart System 3 equipped with an area 

detector and a sealed x-ray tube. Both difïractometers utilized graphite-monochromated Mo 

Ka radiation (\=0.71069 À). Single-crystal data sets were acquired and analyzed using the 

associated software packages for each machine, controller software (Molecular Structure 

Corp.) for the AFC6R, and SMART (Bruker AXS) for the Bruker CCD. The data were then 

manipulated and refined in either TEXSAN34 or SHELXTL35. Details of the data collection 

and analysis may be found in the experimental section of each of the chapters. 

Energy Dispersive X-ray Spectroscopy (EDS). The elemental compositions of 

crystals and powdered samples were occasionally evaluated via energy-dispersive X-ray 

spectroscopy (EDS) on a JEOL system 840A scanning electron microscope (SEM), equipped 

with an IXRF X-ray analyzer system and a Keverex Quantum light element detector. 

Typical data collections utilized a beam of approximately 20k V and 0.3nA to gain a count 

rate of about 2500 s*1. 

Magnetic Susceptibility Measurements. Molar susceptibilities were measured with 

respect to temperature on a SQUID magnetometer from Quantum Design. The air-sensitive 

nature of the samples required the use of a special container. The powdered samples were 

held between two fused silica rods (3 mm outer diameter) which were sealed within a fused 

silica tube (3 mm inner diameter and approximately 15-20 cm long).36 All samples were 
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loaded in a He-filled glove box. The raw data obtained were then corrected for the sample 

holder and for the diamagnetic cores. 

Electrical Resistivity Measurements. The electrical resistivities of powdered 

samples were measured by the electrodeless Q-method.37 This technique relies on the 

surface conduction of a sample to change the quality factor of a coil. The powder sample 

was sieved through a 250 fim mesh onto a 150 nm mesh sieve to obtain a sample with an 

average 200 (im particle size. The sample was then diluted with dry chromatographic AI2O3 

(approximately 1 cm3) to isolate the individual particles from one another. Each sample was 

loaded inside a He-filled dry box and later sealed inside the Pyrex tube with a natural 

gas/oxygen torch. 

To measure the resistivities, the sample was placed inside a copper coil operating at 

34 MHz, and the quality factor (Q) of the coil was measured with a Hewlett-Packard model 

4342A Q meter over a temperature range of approximately 100 to 298K. At each 

temperature, the sample was then removed from the coil, and the quality factors (Q0) 

measured each time. This change in the quality factor AQ (normally Q > Q0) was used to 

calculate the sample resistivity (p) using the formula:38 

,-SSL 
Jfl/QI 

where B is a constant that is calibrated for every coil (4.84 x 105), V is the sample volume 

(m3), a is the average particle radius (m), and A(l/Q) is 1/Q - 1/Q0. This equation assumes 

that the samples are diamagnetic or only weakly paramagnetic; various corrections need to be 

included otherwise. The average resistivity values obtained from this method are 

approximately within a factor of three of those measured by four-probe methods.39 
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The resistivity values in this work are reported in units of micro-ohm centimeters 

(/id cm) and the temperature resistivity coefficients are calculated from the slope of the p 

versus T curves [5p/(p0ÔT)] in K*1,40 where p0 is the resistivity of the sample at the average 

temperature measured. 

Electronic Structure Calculations. Molecular orbital and band calculations were 

made with the CAESAR EHTB software package.41 The calculations were carried out within 

the tight-binding approximation for the full structure at k-points spread out over the 

irreducible wedge and used to produce the energy densities-of-states (DOS) and crystal 

orbital overlap populations (COOPs). The Hi, values and orbital coefficients used are listed 

in the respective chapters. Occasionally it was necessary to charge iterate the starting H„ 

parameters to self consistency, in order to obtain a more satisfactory and reasonable answers, 

and this was done with the associated Iterate program.42 

Thesis Organization. The thesis has been arranged in the form of papers suitable for 

publication. Each chapter corresponds to one paper. The second paper has been published, 

while the remaining chapters are ready for submission. The author has also contributed to 

another publication that is not directly related to the thesis topic. This paper reported the 

synthesis, single crystal x-diffraction study, and theoretical considerations of AgTlnPd (A = 

Cs, Rb, K)43 The author was involved with running and analyzing the extended Httckel 

calculations. 
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CHAPTER 2. SYNTHESIS AND STRUCTURE OF Rl^Pb» A ZINTL PHASE WITH 

TWO DIFFERENT ISOLATED Pb/" CLUSTER GEOMETRIES. 

Michael T. Klem and John D. Corbett* 

Department of Chemistry and Ames Laboratory —DOE,1 

Iowa State University, Ames LA 50011 

Abstract 

The title phase, isostructural with the previously reported Zintl phase KtPbg, was 

synthesized by direct fusion of a stoichiometric amount of the elements at 800 °C for 24 

hours and then annealed at 350 °C for 4 weeks. The compound crystallizes in a monoclinic 

space group, P2\/m, Z = 4, with a = 9.8969(16), b = 13.408(2), c — 16.250(3) Â, and j8 = 

103.009(3). The compound contains two different types of Pb/" deltahedra, a monocapped 

square antiprism and a distorted tricapped trigonal prism. Both cluster geometries 

correspond to a nido assignment even though the tricapped trigonal prism is not the classic 

Wade's rules nido deltahedron expected. The geometries and their relationships are 

discussed, and reasons given for the unusual electron count of the tricapped trigonal prism. 
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Introduction 

Until recently, the Zintl chemistry of the heaviest congener of the Group 14 elements, 

lead, was unknown. The exploration of the alkali-metal—lead binary systems has only 

produced three types of isolated clusters to date; the tetrahedron found in APb2 and the nine 

atom deltahedra (two types) in the A^bg type phases (A = K, Cs)3,4. The title phase 

represents the second known alkali-metal—Pb binary which contains two different types of 

deltahedra, the mY/o-monocapped square antiprism, and the distorted tricapped trigonal 

prism. Previous to EQPbg, the only known examples of nine atom deltahedra were found in 

compounds in solution5 or with cryptated alkali-metals.6 

The use of the concepts put forth by Zintl-Klemm and Wade are useful because of 

their ability to form correlations between the geometric and electronic structures of clusters.7 

The title phase is interesting because it possesses a c/oso-Iike cluster (the tricapped trigonal 

prism) but has a nido (2n + 4) electron count. Molecular orbital studies on the tricapped 

trigonal prism have indicated closed-shell bonding at 40 electrons per formula unit which is 

in excess of the 38 predicted from Wade's rules. A study of the effects on the molecular 

orbital diagram as one goes from a perfect tricapped trigonal prism (D]h) to one that 

approximates the observed cluster (C^) points to the substantial role the a% orbital plays in 

the bonding of the now distorted deltahedron. It is these distortions that permit the 2 extra 

electrons to occupy a now lowered bonding orbital and allow for the characterization of 

Rb4Pb9 as a Zintl phase. 
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Experimental Section 

Synthesis. The general techniques involving welded Nb containers sealed within 

evacuated silica jackets have been described elsewhere.8 An improved method for sample 

mounting for powder pattern measurements was employed. The sample was held between 

two sheets of aluminized polyester film by means of a thin centered film of vacuum grease 

that also sealed the outer edge of the sheets to prevent decomposition of the air sensitive 

products.9 Thus the appearance of broad patterns for elemental Pb from subsequent 

accidental oxidation of the sample surface was greatly reduced over that previously achieved 

with cellophane tape mounting. All operations were carried out in a N%- or He-filled glove 

boxes. 

The sample was synthesized from the neat elements (all from Aesar) in sealed 

niobium tubes. The surfaces of the Rb (99.95%) and Pb (99.9999%) were cut and cleaned 

with a scalpel before use. The sample was then equilibrated at 800 °C, quenched, and 

annealed at 350 °C for 4 weeks. The Guinier powder pattern of the products showed RbjPbg 

and a trace amount of elemental Pb. 

X-ray Diffraction. A single crystal of the dark grey, brittle compound was mounted 

in a glass capillary inside a glove box. The crystal was first checked by Laue photography 

for its singularity and then transferred to a Bruker SMART 1000 CCD-equipped X-ray 

dif&actometer for data collection. A total of 1818 frames was collected with an exposure 

time of 30 s each. The reflection intensities were then integrated with the SAINT 

subprogram in the SMART software package.10 A monoclinic unit cell was initially 

indicated from 322 indexed reflections, and the data collection process yielded a total of 
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12799 reflections out of which 11773 had intensities greater than 2a(I) and 1935 were 

independent. The program SADABS was applied for an empirical absorption correction.11 

The SHELXTL software package was used for space group determination. 

Systematic absences led to the indicated primitive cell with the possible space groups being 

Pl\ (4) or P2\/m (11). The intensity statistics showed a clear indication of centrosymmetric 

space group (<£2 - 1> = 0.917), and the centrosymmetric space group P2\/m gave 

satisfactory refinement results. The refinement was carried out via direct methods, and the 

final residuals were R(F2)/RW = 5.0/11.8 with the highest residual in the AF map, of 2.824 

e/Â3, located 1.85 À from Pb4. 

Calculations. Theoretical calculations were made over 326 k-points in the 

irreducible wedge with the aid of the CAESAR EHTB program of Whangbo, et al.13 Only 

the lead atoms were included (Hh and ft for Pb 6s: -15.70 eV and 2.35, for Pb6p: -8.00 eV 

and 2.06).14 

Results and Discussion 

Structure. This phase crystallizes in the fCtPbq structure type.3 Details of the 

refinement as well as important Pb-Pb distances are listed in Tables 1 and 2 respectively. 

The structure can be described as isolated nine-atom clusters of lead in two different, but 

closely related, geometries (Figure 1) with the same formal charges of 4-. 

The type A cluster (Pb2, 4-6, 9, 11) is a distorted nido-monocapped square antiprism, 

Figure 2a, with the expected charge of -4 as predicted by Wade's Rules (2/1+4). The square 

of atoms Pb2, 5,9 is capped by Pb6, while the square of Pb4, 11 is left open. The distances 

within the cluster range from 3.064(2) to 3.539(2) Â. The largest distances occur within the 
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capped square of the antiprism and the shorter distances occur from the capping atom and in 

the open square of the antiprism. As usual, there appears to be some association between the 

bonding associated with the capping atom and the distances within the capped square. This 

inverse relationship gives rise to distances that are on average 0.35 Â longer within the 

capped square as compared to the uncapped face. 

The Type B cluster (Pb 1,3, 7-8, 10,12) is an elongated tricapped trigonal prism, 

Figure 2b, with two long vertical edges of the trigonal prism (3.835 Â) and a shorter third 

one (3.441 A). The other distances within this cluster range from 3.070(2) to 3.323(2) À. 

This geometry for a cluster of nine atoms and 22 electrons is quite uncommon in neat solids 

with other known examples including the A*Ttg, AlaTti?15 (A = alkali metal and Tt = group 

14 minus carbon), and CsioKePbse.16 The alkali-metal about each cluster adopts the expected 

configuration. The alkali-metal caps and bridges the faces and edges of the polyhedra, 

respectively. 

In order to assign a cluster to a specific geometry (square-prism or trigonal prism) one 

needs some criteria to compare. What has traditionally been done is to compare important 

distance ratios and dihedral angles in a series of related clusters. Listed in table 4 is the 

paramagnetic closo-Pb»3* tricapped trigonal prism in [2, 2, 2-crypt-IC^Pbg O.5en, ' ̂ a 

monocapped square antiprism from [2, 2, 2,-crypt-K]3[KPb9],18 the monocapped square 

antiprism from CsjPbg/ and the elongated tricapped trigonal prism of Big5*.19 The two 

cluster types found in the present compound were also included for comparison. The table 

clearly shows that the type-A clusters have parameters that correlate with the nido-

monocapped square antiprism classification. The type-B clusters, however, appear to be 

closer to the tricapped trigonal prism classification. 
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Bonding. The clusters are found in a ratio of 1:1 in the full structure so the formula 

could be written as Kg[Pbg (type A) Pbg (type B)]. Since the type A is a normal nido-cluster, 

the formal charge should be -4, and this in turn implies that type B also has a -4 formal 

charge to give a total that is consistent with the number of cations present. This also implies 

that both clusters have 2n + 4 skeletal electrons instead of the 2n + 2 prescribed for tricapped 

trigonal prisms by Wade. Extended Htickel calculations show similar HOMO-LUMO gaps 

at about 3.0 and 2.6 eV for the A- and B-type clusters at 40 electrons (22 skeletal electrons + 

18 lone pair electrons). Analysis of the COOP curves for the full structure show that both 

cluster geometries are optimized (all bonding levels filled) at 40 electrons per formula unit, 

as expected. 

There has been extensive discussion in the literature on the bonding adopted within 9 

atom deltahedra with monocapped square antiprism or tricapped trigonal antiprism 

geometries.3'17'18,20 The stabilization of a tricapped trigonal prism with a 2n + 4 electron 

count can be understood by looking at the changes in a MO diagram when one goes from a 

regular tricapped trigonal prism to a distorted one as in the title compound which is shown in 

Figure 3. The MO diagram for the regular tricapped trigonal prism (at 2n + 2 electrons) 

shows a relatively large gap above the a% LUMO. This LUMO would be attractive for 

additional electrons if it could be lowered, and this is what happens when the cluster is 

allowed to distort. This SLZ" orbital has been discussed before and is bonding within the 

triangular bases, but antibonding between them with the capping atoms not participating.21 

This bonding character makes the orbital particularly sensitive to the height of the prism, and 

thus is the controlling factor in the distortions that are observed in the title compound. 

Elongating two (or three) of the three prism edges causes the az" orbital to drop in energy as 
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the antibonding component between the two triangular bases is greatly reduced. This 

lowered orbital is now only 0.26 eV above the previous molecular orbital and below a gap of 

more than 2.5 eV. 

The closest intercluster distance in Rb^bç is 3.774 Â which occurs between Pb4 and 

Pbl 1 of the type-A clusters. This distance is longer than that found in the isostructural KjPbg 

(3.669 Â) due to the larger rubidium cations. An overlap population of 0.01 confirms that 

there is no intercluster bonding between the type-A clusters. For comparison, the intracluster 

overlap populations for Pb5-Pb9 at 3.539 Â is 0.15 and the overlap for Pb2 - Pb5 at 3.403 À 

is 0.22. It was observed for KjPbg that these intercluster interactions caused a broadening of 

the valence p-band which gave rise to a small band gap of 0.30 eV. The larger intercluster 

separation found in RbjPbg lessens this interaction somewhat and the band gap grows to 0.7 

eV. Care must be taken when considering these results because the calculations fail to 

include any cation contributions to the bonding. 

Conclusions. 

The isolated clusters in the title phase can best be thought of as a monocapped square 

antiprism and a tricapped trigonal prism with two elongated edges. They both carry a 4-

charge which is consistent with their assignment as nido species (2n + 4 electrons). The 

distorted tricapped trigonal prism is able to achieve this configuration by lowering the 

LUMO of the idealized closo cluster by elongating two of its three edges. The ability to 

correlate the structure with a delocalized closed-shell bonding scheme allows Rb^Pbg to be 

classified as a Zintl phase. 
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Table 1. Selected Details of Data Collection and Structural Refinement for Rb^bg 

Rb4Pb9 

Formula Weight 

Crystal system, space group, Z 

lattice constants 

a (A) 

6(A) 

c(A) 

<8(°) 

F(A3) 

2206.59 

monoclinic, P2\/m, 4 

9.8969(16) 

13.408(2) 

16.250(3) 

103.009(3) 

2101.0(6) 

Calc. density, Mg m 3 

Absorp. coeff. /i (Mo Ka, cm"') 

R, Rwa 

6.976 

810.08 

0.050,0.118 

" R = E||F0| - |FC||/S|F0|; Rw = [Ew(|F0| - |Fc|)z/Lw(F„)']l,z; w = 2il/2. 
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Table 2. Refined atomic positions (x 104) for Rb4Pbg. 

X y z Ueq 

Pbl 624(2) 2500 2426(1) 42(1) 

Pb2 1387(2) 2500 4976(1) 45(1) 

Pb3 -37(1) 618(1) 1220(1) 51(1) 

Pb4 -3905(1) 1333(1) 6198(1) 50(1) 

Pb5 3108(1) 650(1) 6218(1) 52(1) 

Pb6 1808(2) 2500 6911(1) 51(1) 

Pb7 -2291 1353(1) 2159(1) 54(1) 

Pb8 -2407(2) 1337(1) -250(1) 55(1) 

Pb9 -5031(2) 2500 7566(1) 69(1) 

PblO 627(2) 2500 309(1) 52(1) 

Pbll 3895(1) 1337(1) 4536(1) 54(1) 

Pbl2 -4252(2) 2500 737(1) 85(1) 

Rbl -2581(5) 2500 4321(3) 59(2) 

Rb2 3823(3) 772(3) 2139(2) 59(1) 

Rb3 -521(3) 28(3) 6294(2) 52(1) 

Rb4 -3265(4) -989(3) 909(3) 67(1) 

Rb5 -1146(5) 2500 7947(3) 74(2) 



www.manaraa.com

28 

Table 3. Atom Separations (Â) in ItixtPbg. 

Atoms Distance Atoms Distance 

Pbl -Pb3 x2 3.1719(13) Pb4 —Pbll x2 3.064(2) 

Pbl -Pb7 x2 3.211(2) Pb5 - Pb6 x2 3.118(2) 

Pbl -PblO 3.441(3) Pb5 - Pb9 x3 3.539(2) 

Pb2 - Pb5 x2 3.4025(19) Pb5 - Pbl1 3.145(2) 

Pb2 - Pb6 3.077(3) Pb6 - Pb9 x2 3.069(3) 

Pb2 - PblI x2 3.147(2) Pb7 - Pb7 3.075(3) 

Pb3 - Pb7 3.132(2) Pb7 - Pbl2 x2 3.075(2) 

Pb3 - Pb8 3.1001(19) Pb8 - Pb8 3.119(3) 

Pb3 - PblO x2 3.070(2) Pb8 - PblO x2 3.323(2) 

Pb4 - Pb4 3.129(3) Pb8-Pbl2x2 3.107(3) 

Pb4 - Pb5 x2 3.1022(18) Pbl I-Pbll 3.119(3) 

Pb4 - Pb9 x2 3.122(2) 
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Table 4. Selected Edge Ratios and dihedral angles in some Nine-atom Clusters. 

Cluster Symmetry Edge Ratios3 

hj:hi hî.h\ 

Angle" Ref. 

Pb9
3' ~D3h 1.05 1.01 14 17 

Pb/' «C4V 1.31 1.03 0.7 18 

Pb/- ^Czv 1.28 1.05 5.3 4 

Bi9
5* =D3h 1.07 1.00 16 19 

Pb/-(A) *C2v 1.29 1.04 0 c 

Pb/(B) ^Czv 1.13 1.13 13.1 c 

%:h| and hz:h, are the ratios of the longest height to the shortest height and the second 
longest height to the shortest respectively. 

bThe angle listed is the smallest dihedral angle in the waist of trigonal prism or the dihedral 
angle in the base of the square antiprism. 

cThis work. 
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Figure 1. A view along b of the structure Rb4Pb9 showing the 
two types of nine-atom clusters: the A-type are lighter than 
the B-type. The rubidium cations are shown as isolated 
spheres, and the unit cell is outlined. 
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a) 
Pb2 

Pbll 

Pb9 

Pb4 
Pbll 

b) PblO 

Pb3 Pb3 

Figure 2. Drawing of the two types of Pbg4" clusters in 
Rb4Pb9: (a) the A-type, a monocapped square antiprism, 
and (b) the B-type, an elongated tricapped trigonal 
prism. 
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Figure 3. A MO representation of the consequences of 
distorting a tricapped trigonal prism starting from: (a) the 
ideal cluster (Di/() to (b) a tricapped trigonal prism with 
two of three edges elongated. 
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Table S1. Details of data collection and refinement for Rb^bg 

Rb4Pb, 

Formula Weight 2206.59 

Crystal system, space group, Z monoclinic, P2,/m, 4 

Unit cell dimensions (Â)" 

a 9.8969(16) 

b 13.408(2) 

c 16.250(3) 

0(°) 103.009(3)° 

K(A3) 2101.0(6) 

Calculated density, Mg m~3 6.976 

Diffractometer Bruker Smart CCD 

Octants, 20max (deg) -11«£A 2:10, OS* 2ïl4,0-S/ â 18 

Observ. refl. (>2a t)  3163 

unique 1935 

Absorp. coeffic. (Mo Kq; mm"1) 81.008 

variables 131 

R. R,b 0.0495, 0.1180 

GOF on F2 0.722 

Extinction coefficient 0.00010(3) 

Largest AF, e7Â3 2.824 at 1.85 Â from Pb4 

" Guinier powder pattern data, X= 1.540.562,23 °C. 
"R = E||F0| - |FC||/E|F0|; /?„. = [Ew<|F0| - {Fc\f/Zw(F0)2]in-, w = aF\ 
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Table S2. Anisotropic displacement parameters" (Â2 x 103) for Rb^Pbg 

RbjPbg U„ U 22 u33 U,2 U,3  U23 

Pbl 47(1) 38(1) 37(1) 0 -1(1) 0 

Pb2 37(1) 52(1) 42(1) 0 2(1) 0 

Pb3 53(1) 44(1) 51(1) -6(1) 3(1) 13(1) 

Pb4 40(1) 39(1) 69(1) -2(1) 9(1) 5(1) 

Pb5 47(1) 38(1) 73(1) 15(1) 18(1) -4(1) 

Pb6 48(1) 70(2) 42(1) 0 22(1) 0 

Pb7 56(1) 37(1) 75(1) 8(1) 28(1) 0(1) 

Pb8 67(1) 45(1) 44(1) KD -7(1) -11(1) 

Pb9 48(1) 128(2) 31(1) 0 14(1) 0 

PblO 50(1) 74(2) 37(1) 0 14(1) 0 

Pbll 62(1) 53(1) 49(1) -21(1) 19(1) -5(1) 

Pbl2 39(1) 191(3) 32(1) 0 6(1) 0 

Rbl 51(3) 90(5) 41(3) 0 20(2) 0 

Rb2 53(2) 67(3) 57(3) 14(2) 13(2) 0(2) 

Rb3 45(2) 48(2) 60(3) -3(2) 8(2) -2(2) 

Rb4 83(3) 46(2) 65(3) 4(2) 1(2) -15(2) 

Rb5 50(3) 149(7) 23(3) 0 9(2) 0 
aT = exp(-2r(/»VzU, \ + ... + 2hk a*b*U12] 



www.manaraa.com

35 

CHAPTER 3. A3Tt5 PHASES Sr3Sn5, Ba3Pb5, La3Sn5. STRUCTURE AND BONDING 

IN A SERIES OF ISOTYPIC METALLIC COMPOUNDS WITH INCREASED 

ELECTRON COUNT AND THEIR COMPARISON WITH THE NOMINAL ZINTL 

PHASE La3Ins 

A paper published in Inorganic Chemistry 

Michael T. Klem, J. T. Vaughey, Jason G. Harp and John D. Corbett* 

Reprinted by permission: Inorg. Chem. 2001,40,7020-7026. 

Department of Chemistry and Ames Laboratory —DOE,1 

Iowa State University, Ames LA 50011 

Abstract 

A series of compounds that contain square pyramidal Tts polyanions of tin and lead 

has been obtained in alkaline-earth or rare-earth metal-tetrel systems by direct fusion of the 

elements at 570 °C (S^Sns), 1000 °C (BasPbs), or 1300 °C (LasSng) followed by slow 

cooling or annealing. The crystal structures for all three have been refined in the PusPds 

structure type (orthorhombic, Cmcm, Z = 4) with cell dimensions of a = 10.644(2) , 

11.154(7), 10.352(5) Â, b = 8.588(1), 9.049(7), 8.290(6) Â, c = 10.895(2), 11.370(5), 

10.652(5) Â for S^Sns, BasPbs and LasSns, respectively. Square pyramidal clusters of the 

tetrel elements are weakly interlinked into chains via two types of longer intercluster 

interactions that are mediated by bridging cations and substantially influenced by cation size 
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and the free electron count. The new compounds are all metallic (P295 ~10 (SraSns) to -25 

(LaaSng) fiQ cm), in agreement with simple valence considerations that predict two and five 

extra electrons per formula unit, respectively, beyond that necessary for closed shell nido-

Tts4" anions. Extended Hiickel tight-binding calculations on the new compounds, as well as 

on Las Ing, reveal that bonding in the regions below and around the Fermi energies are 

dominated by general cation-anion interactions, that is, lattice covalency. Closed-shell 

bonding features for the classical Sns4-, Ins9", etc. ions are also obvious but subsidiary to the 

heteroatomic interactions with the cations. The intercluster contacts are relatively 

unimportant in bonding. 

Introduction 

Both Zintl-KIemm and Wade's principles are useful in inorganic chemistry because 

of their utility in the correlations of geometric and electronic structures and compositions. 

Zintl's approach also has predictive power and offers insights into properties and bonding 

considerations for many main-group solid state materials. Some years ago we considered 

this correlation between electron count and cluster geometry for two new compounds with 

the novel PuaPds structure type, La;In; and /S-Yalns, in which there are chemically distinctive 

cluster anions of square pyramidal Ins. According to Wade's rules (or simple MO 

calculations), the indium square pyramids would be classified as nido deltahedra with 2n + 4 

skeletal electrons (14) and a charge of 9-, thereby matching the expected contribution from 

three rare-earth metal atoms and making these salts structurally Zintl phases. Although the 

fact that both phases are poor metals (Lajlns: P295 = 90 cm, XPauii = ~4 x 10"4 emu mol"1) 

may seem to deny their strict classification as Zintl (valence) compounds, this situation is in 



www.manaraa.com

various degrees common at least among alkali-metal-triel systems relative to analogous 

compounds of later main-group elements. Diminishing band gaps and increased covalency 

may be important in these systems. Nonetheless, the compositions of numerous cluster 

compounds, and their properties when known, still encourage useful and meaningful 

descriptions of most of them in terms of low lying valence electron pair bonding of the post-

transition components, often in clusters, that clearly reflect significant and nominally closed-

shells in regular and predictable patterns.5 

The stabilities of diverse ionic cluster salts in solids are clearly often influenced by 

packing as well as electronic effects. Chemical modifications of the sizes of the cations or 

anions along with perhaps the formal charge on either can lead to new structure types, 

although these perhaps more often lead to instability of the cluster species. In the particular 

examples of PuaPds structure type reported here, variations in the electron requirements of 

the main-group polyanions together with charges on the countercations have been found to 

lead to a novel series of salts in which different numbers of nominally free, metallic electrons 

remain beyond Tt/" clusters, namely, SrçSns + 2e~, BaaPb; + 2e", and LasSns + 5e" to add to 

the earlier electron-precise examples Laglng and /î-Yalns. This structure type also raises other 

issues in that the limited number of countercations allow appreciable interanionic interactions 

that are mediated by the cations. This article reports structural, property, and bonding details 

of this series, and some ramifications of adding electrons to a series of isostructural 

compounds that included the valence-precise Laslns. These compounds present a clearly 

different regime than do many more molecular systems wherein such metallic characteristics 

would be quite foreign, and free electrons would normally be expected to reduce or "open 

up" homoatomic bonds. 
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Experimental Section 

The general techniques utilized welded Ta containers, glove-box operations, and 

Guinier powder diffraction, as have been described earlier.6'7 An improved method for 

sample mounting for powder pattern measurements was employed. Samples were held 

between two sheets of aluminized polyester film by means of a thin centered film of vacuum 

grease that also sealed the outer edge of the sheets to prevent decomposition of the air-

sensitive products.7 Thus the appearance of broad patterns of Sn or Pb metals in the patterns 

from subsequent accidental oxidation of the sample surface was greatly reduced over that 

previously achieved with cellophane tape mounting. All operations were carried out in N%- or 

He-filled glove-boxes. 

Syntheses. The synthesis of SrçSns was carried out by mixing stoichiometric 

amounts of strontium (Aesar, distilled, 99.8%) and tin (Aesar, 99.99%), allowing these to 

prereact at 900 °C and then quenching and equilibrating the material at 570 °C for 3 weeks. 

The product was brittle and grey. An X-ray powder pattern of the product could be entirely 

indexed on the basis of the PusPds structure type. The composition of this phase, 37.5 a/o Sr, 

falls close to the boundary between two earlier studies of the Sr-Sr system, 35%, but neither 

saw evidence for it.8 It's furthermore not clear whether otherwise assigned isothermal events 

at 580 - 598° or 820 °C in this region might be the peritectic decomposition or melting 

temperature for SrçSns, although the higher value seems more likely. 

The synthesis of BajPbs was similarly carried out by direct fusion of stoichiometric 

amounts of barium (Aesar distilled, 99.8%) and lead (Aesar, 99.9999%) at 1000 °C for 2 

hours, after which the mixture was cooled at 6 °C/hr to 550 °C and held for 2 hours. The X-
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ray powder pattern likewise revealed only the PuaPds type product, and the refined lattice 

constants were in good agreement with those reported by Bruzzone and coworkers.9 The 

LasSng was also made by direct combination of lanthanum (Ames Lab, 99.999%) and tin at 

1300 °C, where it was held for 12 hours and then slowly cooled to room temperature over 2 

days. Its X-ray powder pattern revealed the expected Pu3Pds-type pattern in an apparent 

quantitative yield (>95%), and the lattice dimensions are close to those reported earlier for a 

phase thought to be related to PujPds.10 More importantly, intensity distributions in all three 

patterns were in excellent agreement with those calculated on the basis of the refined 

structural data (below). 

Hydride errors can be particularly serious with many commercial alkaline-earth 

metals.11 The absence of significant hydride in what we identify as Sr3Sng and Ba^Pb^ was 

ensured by production of materials with the same dimensions in each case whether these 

were made (a) with a SrH% or BaH% source, (b) when a dynamic vacuum was applied to the 

Sr-Sn system in Ta at temperature to remove H, or (c) carefully sublimed Ba was used in that 

synthesis. 

Attempts to prepare a number of other isotypic, cation-precise or excess electron 

phases with the same anions were not successful, i.e., KSrzSns, RbS^Sns, RbzSrSns, 

S^SruAs. S^SiuGa, CsSrzSns, Cs2SrSn5, CszBaPbg, RbzBaPbs. Antimony analogues were 

not found, and cation-richer phases such as Csa Lazing that might provide better separation of 

Ins9- units were not achieved either. It was possible, however, to mix alkaline-earth with 

rare-earth metal cations to prepare other isotypic phases that presumably had 2-5 electrons 

in excess of the expected closed shell values, e.g., YSrzSn? + 3e. It was also possible to 

substitute up to -20% Ga for Sn2 in La3S1u.6Gao.4-
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X-ray diffraction. Powder diffraction data obtained by an Enraf-Nonius Guinier 

camera and Cu Kttl radiation were used for phase identification. The films were usually first 

compared semiquantitative^ with the patterns calculated for phases with known structures. 

The compositions of mixed products were estimated visually from relative powder pattern 

intensities, considering unit cell contents as well. The cell parameters listed in Table 1 were 

obtained by least squares refinement of measured and indexed 20 values utilizing NIST 

silicon as an internal standard. 

Several small grey crystals of SrjSns were first isolated from a KioSrsSnu reaction 

mixture, placed into thin-walled capillaries, and checked by Laue photographs. Diffraction 

data from one specimen (0.25 x 0.13 x 0.15 mm) were collected at room temperature using a 

Rigaku AFC6 diffractometer with monochromated Mo Ka radiation. Routine indexing of 25 

centered reflections gave a C-centered orthorhombic cell. Systematic extinctions led to the 

selection of space group Cmcm and this, rather than the acentric alternate Cmc2, was 

confirmed in a refinement carried out with the aid of the TEXSAN package.12 The data were 

corrected for absorption empirically according to three scans of strong reflections with 

different 6 values. The final residuals were R(F)/RW = 3.6/6.0 with the largest residual in the 

AF map of 3.6 e/A3, located 0.9 A from Sn2. Potassium was not found in the structure, as 

further confirmed by the high yield syntheses later achieved from stoichiometric reactions in 

the binary system. 

Similarly, small silvery crystals of BagPbs and LagSns were mounted into thin-walled 

capillaries in a glove box, checked by Laue photographs, and diffractometer data collected 

from each. The routine indexing and cell reduction procedures indicated C-centered 

orthorhombic cells for both, and this was verified during collection of a full data set for each. 
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Systematic absences indicated Cmcm (no. 63) or Cmc2, (no. 36), and since a PuaPds-type 

structure was already indicated by the powder diffraction data, the former was chosen. Each 

data set was corrected for absorption with the aid of psi-scans of three reflections. Their 

refinements were uneventful. Anomalous dispersion and secondary extinction were both 

taken into account. Because of the strong absorption and the inadequate corrections 

obtained, particularly at higher 6, an additional correction was applied to each data set by 

means of DIFABS, starting with isotropic atom displacement values and unaveraged 

intensity data, as recommended.13 The final residual R/Rw values and largest peaks in the 

difference maps were: BagPbs: 4.2/5.1% and 3.96 e7Â3 1.6 Â from Pb2; La^Sng: 3.6/4.1% 

and 2.8 e~/Â3 2.1 Â from La2. Most of the published estimates of fractional positional 

parameters in BaaPbs made on the basis of powder diffraction data9 were off by 0.01 to 0.02, 

too much to be useful. 

Selected crystallographic and refinement data for the three studies are given in Table 

2, and more detailed information and displacement ellipsoid parameters are given in the 

Supporting Information, Tables SI, S2. Refined atom positions for the three structures are 

listed in Table 3. All three are the first structural refinements. 

Calculations. Theoretical calculations were made over 216 k-points in the 

irreducible wedge with the aid of the CAESAR EHTB program of Whangbo, et al.14 Orbital 

coefficients for all elements and H„ values for the main group atoms were taken from 

Alvarez.15 Use of La energy values from the same source in the Lading and LasSns 

calculations gave some nonsensical results, including reverse charge transfer from the anions 

and to lanthanum. Therefore, the La H,-,- data were charge-iterated to self-consistency versus 

In with the aid of a package in the program EHMACC16 and the charge coefficients from 
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Alvarez.15 This raised the La values by 2.5 (s) to 3.3 (d) eV. The same was done for BaaPbs 

starting with Hi, estimates for Ba from Seo.17 The H„ values for valence d orbitals on Sr and 

Ba were obtained following Burdett's method for making multiplicity corrections to the 

spectroscopic data for neutral atoms.18,19 All the parameters employed are listed in Table 4. 

Property measurements. Resistivities of SrjSns and LaaSng were measured by the 

electrodeless Q method4 on 66.7 (44.8) mg that had each been sieved to 250 - 425 fim 

powder and diluted with chromatographic AI2O3. Measurements were made at 34 MHz over 

120 - 240 K. The resistivity of SrjSns extrapolated to 298 K. was 11 /ifi cm with a 

temperature coefficient [(ôp/ôT)/p] of 2.8(3) x 10"2 K"1, while LaaSns yielded 24 /id em at 

298 K with about twice the temperature dependence, 5.5(7) x 10"2 EC-1. The absolute 

resistivities may be off by a factor of two or three. 

Results and Discussion 

The present article reports three newly structured members of the PuaPds structure 

type that are especially novel because of the clear persistence of square pyramidal cluster 

groups of the elements Sn and Pb in spite of the apparent presence of excess electrons in 

them. These become more significant chemically when taken together with the prior 

example of the isotypic Lading.4 The last had been given the easy assignment as a Zintl phase 

structurally21 in response to the evident valence balance between the expected cation 

oxidation numbers and the nominal closed-shell nido-Ins9- anion. The fact that this phase is 

actually a poor metal will receive further consideration later. The new examples SrçSns, 

BasPbg and LasSns are on the same basis 2, 2, and 5 electrons rich, respectively, with regard 

to valence closure. Most important for the moment is what we can deduce about the bonding 
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in these compounds, including possible or perceptible intercluster bonding interactions as 

well as, it turns out, significant heteratomic cation-anion bonding or lattice covalence. The 

fact that the pentatomic anions are not well separated in the presence of a cationranion ratio 

of only 3:1, and the relative sizes of the component ions, play significant roles in these 

secondary interactions. The metallic character of Laalns was earlier attributed to intercluster 

bonding effects.4 Although we will not consider Madelung energies per se, it must be 

recognized that the ultimate stability of every particular ion packing must in detail be 

significantly dependent on this factor as well. 

The Structures. The structure description will start with the SrçSns phase as 

representative of the lot. The previously reported Las Ins will be incorporated into the 

discussion as well, so critical distances in all four phases are listed in Table 5. Near-[100] 

and -[001] views of the Sr^Sns (PuaPds-type) unit cell are shown in Figure 1, with the Sns 

units as blue polyhedra and the separate Sr atoms red. The polyanions all have mm (Czv) 

symmetry with the 2-fold axes parallel to and vertical in the Figure. The basal Sn2 and Sn3 

atoms do not lie in the same plane, doubtlessly because of the several factors that go into the 

packing and bonding; the separations between these two atoms parallel to range from 0.17 to 

0.29 Â with that in La^Sns at the upper limit. The ranges of the three independent 

dimensions within the "square" pyramids, marked at the upper right in Figure 1 for SrjSns, 

reflect this distortion and vary from 0.12 to 0.22 Â, being more nearly proportional for the 

pairs SnSns vs Ba^Pbs and Latins vs La^Sns, larger for the latter in each pair. There are two 

types of generally longer intercluster distances that are influenced both by the main-group 

cluster element and the size (and presumably field) of the intervening cations, M2-M2 and 

M1-M3. The Sn2-Sn2 (base-to-base) separations are marked in Figure 1 with the narrower 
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solid lines, and the usually larger Snl-Sn3 (base to apex, clearer at the bottom), with lighter 

lines. These are 0.26 and 0.72 Â longer, respectively, than the largest intracluster distance. 

The more important intercluster d(M2-M2) values are with one exception longer than all 

distances within the clusters, by 0.20 Â (Laalns) to 0.45 Â (BaaPbs). In the exceptional 

LajSns, bridging by the smaller cations is evidently responsible for an intercluster 

d(Sn2-Sn2) that is 0.07 Â shorter than the opposed elongated intracluster d(Snl-Sn2), 3.235 

Â. But the only significant intercluster bonding via M1-M3 is in La;In; in which the 

separation is only 0.15 Â longer than d(In2-In2) and comparable in bonding. 

Distances between the two independent cations and atoms in the anions are fairly 

regular. These also allow some comparative measures of anion sizes. The differences in 

specific d(A-Tt) pairs in SrjSns vs BasPbs are generally close to 0.16 Â, with lead naturally 

the larger. Since the cation crystal radii (CN8) differ by 0.14 Â,21 this suggests that the 

contact radii for the lead atoms in the anion are only slightly greater than for tin. 

Coincidently, the same numerical differences apply to comparable bond lengths within the 

two polyanions. In the more important lanthanum salts, the coordination numbers of the 

cations are generally a little larger for La2 with tin (7-10, depending on cutoff) than for 

indium, and the distances are correspondingly about 0.1 Â longer (3.28 and 3.44 Â) for A2 vs 

A1 in both. Because of appreciable conformational changes, distance comparisons for Ins9-

vs Sns4" (+5e) and the La-M interactions are rather erratic (below). 

Bonding. The details of the intercluster and cation-anion bonding need some better 

basis for interpretation than can be obtained through simple distance tabulations. The two 

cations in this structure interbridge four to six clusters with seven or eight good A-M 

interactions each. Because of the limited number of cations and their higher oxidation states, 
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these appear to bring or hold clusters in relatively close proximity compared with internal 

distances in the Tts units. These somewhat complex interplays are more important to our 

understanding of these structures and their bonding than just simple descriptions of polyhedra 

about individual cations. Furthermore, as we have recently noted elsewhere, distances alone 

may be poor descriptors of bond strength because of exterior limitations on distances brought 

on by atom sizes and packing sometimes produce atom separations that have little to do with 

bonding, i.e., matrix effects.22,23 

Thus, a more useful catalog of the pair-wise bonding interactions in these four 

structures was already included in Table 5, the corresponding Mulliken overlap populations 

(OP) for each distance from EHTB calculations (below). The larger OP values and the cation 

bridging effects are best illustrated in Figure 2 for the extreme case of LagSng. Here "bonds" 

between atoms are shown with line widths proportional to OP, black for Sn-Sn and orange 

for La-Sn. (Remember that these are not intercomparable because of overlap integrals that 

are included. Also, the use of Hamiltonian COHP values, which better approximate bond 

energies, would underweight the listed heteratomic values.24) Figure 2 contains one 

complete cluster and the parts of four neighboring clusters (blue, with Sn2 darker) that have 

significant intercluster interactions therewith plus the bridging lanthanum atoms (Lai orange, 

La2 red) that are involved with these tin atoms. (The whole cluster is equivalent to that at the 

upper left in Figure 1.) Particularly striking here is the strength (OP) of the Sn2 - Sn2 

intercluster bonding in LaaSns, in which each pair of Sn2 atoms is bridged by two Lai and 

two La2. A substantial role of Lai in strong interactions with four different clusters is also 

seen at the bottom center. (There are, of course, many other packing components that lead to 

this structural result.) 
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The DOS (densities of states) and COOP (crystal orbital overlap populations) output 

from extended Hiickel calculations give better overall insights as to the nature of, and the 

bonding in, these unusual compounds. They also offer a critical look at both the easy 

assumption of a Zintl phase classification for Las Ins and the question as to whether the new 

members of the electron-rich series reported here somehow fit into a different scheme. The 

existence of a fairly uniform and seemingly dominant heteroatomic lattice covalency is the 

most striking revelation. 

Continuing with SrçSns, the DOS curve (solid) plus the PDOS projections of Sn 

(dotted), Sr s+p (dashed), and Sr d (dash-dot) contributions are shown in Figure 3, left. The 

broad intracluster valence peaks for Sn centered around -10 eV also involve some Sr 

(covalent) contributions. The low DOS at about -7.8 eV corresponds to filling of the classic 

Sns4" bonding orbitals, 24 e7f.u., (and certainly not that appropriate to a 26-electron arachno-

Sn;6- 25), whereas appreciable Sn 4p and, increasingly, Sr 4d states are involved above there. 

The latter do not reach a maximum until about 4 eV about Ef (-6.34 eV in this 

approximation), in contrast to what we shall see below with lanthanum cations. (The Sn 5s is 

dominant below about -13 eV. Note its importance according to intracluster COOP data, 

showing that simple "s cores" are not appropriate to this picture. On the other hand, the Sr 5s 

is generally not important anywhere.) 

A clearer understanding of bonding in S%Sn$ comes from plots of the COOP data — 

overlap-weighted (Mulliken) bond populations, Figure 3 right, in which the Sn-Sn results are 

separated into intra- (dotted) and intercluster (dashed) portions. The former component 

shows a switch from bonding to antibonding contributions just at the point at which the 

classical valence shell is filled, as it should. The individual types of intercluster interactions 
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(not shown) are slightly bonding for Sn2 - Sn2 and antibonding for Snl - Sn3 near -8 eV, 

but both are small. 

There is clearly nothing significant in the way of a Sr - Sr band (dash-dot curve) 

compared with the evidently dominant effect of heteratomic Sr - Sn bonding (solid line) that 

occurs throughout what could be called the valence band and around and above Bp. Plots of 

the individual Sr, - Snj functions therein (not shown) indicate fairly uniform contributions 

across all of the bands. The clear bonding peak near -7 eV arises mainly from most of the 

Sr-Sn pairs that have appreciable overlap populations, Table 5. The charge distributions 

(from atom populations) are about +1.1 for Sri, and +1.4 for Sr2 with its higher CN and 

longer d(Sr - Sn). These would be larger were the Mulliken approximation not to divide 

bond populations equally. 

The bottom line is that a Sn/~ anion does not exist in any isolated sense in S^Sng 

because of both the extra electrons and the overarching lattice band (covalency) from 

multiple and strong Sr - Sn interactions. Nonetheless, that well-bonded closed-shell cluster 

anion persists in this somewhat complex lattice. There's no a priori reason that would 

preclude the existence of this electride salt either, but its prediction (or not) has much to do 

with the effects of efficient packing of the extra cation. 

The comparable data for BasPb; are not sufficiently different to detail. The 

heteroatomic distances and bond populations are naturally longer and less, respectively, 

whereas Pb-Pb populations in the nominal anions are comparable. Expectations for Ba 5d 

energy (Table 4) put this much closer to its 6s level (~ 1.2 eV difference vs. 2.6 eV for Sr 4d 

vs 5s). Shapes of the DOS and COOP curves are very similar to those for SrjSns. 
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Retention of the nominal Sn/~ anions but a switch to lanthanum cations increases the 

magnitude of several effects just described for strontium. This change increases the excess 

electron count to five per formula unit, but the major effects seem to be associated with the 

smaller size and higher charge of La3+ (1.30 Â vs 1.40 Â for Sr2* and 1.56 Â for Ba2+ for CN8 

l9) and the greater proximity of the La 5d valence orbitals, all of which seem to increase what 

we designate as the lattice covalency substantially. The size decrease naturally increases the 

intercluster interactions significantly via the tighter interbridging of clusters by the cations; 

see SrjSns in Figure 2. Figure 4 illustrates the theory results, starting with the DOS for 

LagSng together with PDOS for Sn (dotted) and La (dashed). The minimum in the Sn 

contributions near -7.8 eV corresponds to the (not quite) closed shell for internal bonding in 

the square pyramids, whereas both Sn and, increasingly, La are involved in the bonding up to 

EF, -5.68 eV. The latter are substantially all La 5d, whereas La 6s is not appreciably 

involved below —3.5 eV by these approximations. The COOP results (Figure 4, right) can 

now be anticipated — a more emphatic and wider involvement of the lattice covalency (solid 

line), from the start of the Sn p-band and extending to appreciably higher energies. The 

antibonding Sn-Sn states components over the last 5e" below Ef are principally intracluster, 

with the intercluster contributions being slightly antibonding for Sn2 - Sn2 (3.16 Â) and 

distinctly so for Snl - Sn3 (3.63 A) just below Ef. The charges on the La ions in this 

approximation are each about 0.1 less than found in SnSns, in parallel with the greater 

evident La-Sn bonding and in contrast to their higher oxidation state. 

We can now return to the original member Las Ins, for which oxidation state and 

cluster valence rules predict it to be a valence (Zintl) phase according to the simplest, 

structural viewpoint. This is in reality a poor assignment, basically because of the strong 
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La-In covalency. Differences in the comparison with LaaSns include In states that lie 3.6 (s) 

and 2.1 (p) eV higher than for Sn, and La-M distances and OP values that are -0.01 Â larger 

and very similar, respectively, for In relative to Sn. Changes in packing and bonding lead to 

a significant intracluster OP for Inl-In3 although the separation is only 0.05 Â shorter than 

for Snl - Sn3, whereas In2 - In2 lengthens by 0.26 Â relative to Sn2 - Sn2 but the O.P. 

decreases only modestly. Projection of the In and La orbital contributions in DOS, Figure 5, 

show a familiar pattern except that there are closer to three valence bands, but no sign of a 

gap near Ef for Ins9". Large lanthanum contributions are spread throughout the upper 

pseudo-valence band, and this is seen clearly in the dominance of La - In bonding in the 

COOP data, the solid line in the right part of Figure 5. The intracluster In - In bonding is 

again optimized at EF, the closed shell for the isolated Ins9" anion, but the total In - In 

bonding is optimal somewhat lower because the now-shorter intercluster Inl - In3 (Figure 2, 

Table 5) is substantially antibonding around Ef (not shown). Both intercluster interactions 

(dashed line) make comparable and mainly bonding contributions at lower energies. 

We have, by the way, not considered the isotypic 0-Y3D154 here because the smaller 

cation results in markedly shorter intercluster distance relative to those within the Ins units, 

and we expect that these, as well as appreciably greater lattice covalence, will make this even 

further from a classical Zintl phase. 

The collective results above provide useful information and education on the all-too-

easy Zintl phase classification afforded by the simplest bonding ideas. These seem to work 

fairly well for alkali-metal-tetrel and -pnictide examples, which are often semiconductors 

when resistivities are measured (which is fairly seldom). On the other hand, most valence-

precise cluster phases for alkali-metal-triel phases are found to be metallic, although at the 
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same time often diamagnetic, probably because of the unusual diamagnetic components that 

contribute to the magnetic susceptibilities for these heavy elements.5 Metallicity in the triel 

examples may arise in general because of the virtual disappearance of an electronic gap, 

reflecting the lower electron affinities of the triel elements. We have also recently noted a 

significant covalence entering into alkaline-earth metal-triel phases with network structures 

according to theoretical considerations.17 The greater Madelung energies in most of the latter 

salts are apparently an increasingly important factor, and good accommodation of the higher 

field cations becomes more important as well. In addition, achievement of formal closed-

shell electronic structures for the alkaline-earth metal examples appears to be less frequent 

with these higher charged cations, most being slightly electron deficient. It would appear 

that the Madelung energy must play an important role in the stabilities of the cation and 

electron-rich compounds considered here as well, the great numbers of, and high effective 

charges on, the extra cation in SrjSns, etc. being significant relative to the unknown SraSns. 

Of course, much more subtle factors of alternate phase stability also come into play here, and 

treatment of the delocalized electrons in a Madelung energy sense is problematic. 

A novel variation of these mixed salt-metal characteristics is found in CasIngSn^.26 

Here close packed metallic layers of AuCua and NiaSn types alternate with Zintl layers 

containing Ina5" and Ca2+. 

There is another meaningful chemical viewpoint regarding the electron-rich phases, 

evidently first expressed by Nesper.27,28 We find here, and many places elsewhere, well 

segregated clusters whose compositions, configurations, and evident formal charges agree 

well with classic Wade's rule or more theoretical MO descriptions, giving us useful ways to 

understand and correlate these features. Some of these may coincidentally also be metallic, a 
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property of the least bound electrons, whereas the clusters that chemists readily see represent 

strong interactions of more tightly bound electrons. In the present work we see that such 

units and the chemistry they represent persist in the presence of stoichiometrically excess 

electrons. This seems important. Nesper has aptly likened this to structures that may be 

found in the oceans, buried by the sea — conduction electrons in this case. Things are just 

harder to sort out under these circumstances. 

Finally, to dispense with another supposed problem — the lack of further reduction of 

the Tts4" anions in these metallic Zintl phases.28 Most other possibilities are less reduced 

(TU4-, Ttq4-, etc.) except for formal isolated monoanions Tt4" found in few examples in the 

presence of dipositive or higher charged cations, e.g., CazSn (CoaSi) and CasGea (CrsBa). 

We believe the question is just not that simple in dense polar solids in which strong 

interactions and packing are much more important. Quantitative explanations of relative 

phase stabilities in the latter are not possible even when you know the alternate structure 

types, and they are impossible when you don't. Exploratory synthesis is still essential to 

progress. 

Acknowledgements: We are indebted to D.-K. Seo for help and advice on the calculations 

and their interpretations. 

Added during thesis preparation. Additional calculations were carried out on S^Sns to 

determine the effects, if any, of the size of the alkaline-earth metal. The Sr orbitals were 

contracted to a size comparable to La orbitals. There was no appreciable change in the shape 

and makeup of the Density of States or COOP curves when this was performed. The minor 

changes included a slight reduction of the overall intensity of the heteroatomic conduction 
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band and a shifting of the onset of the Sr d-orbital band to a slightly higher energy. The x-

ray refinement data for LasSai.eGaoA are also included in the supplemental information. 

Note. Supporting Information Available. Tables of additional crystallographic and 

refinement information and anisotropic displacement parameters for the three structures. The 

material is available free-of-charge via the Internet at http://pubs.acs.org. 
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Table 1. Cell Parameters (Â, Â3) of Orthorhombic PuaPds-type phases3 

compound a b c V 

Laalns6 10.345(4) 8.424(6) 10.643(6) 927(2) 

Sr3Sns 10.644(2) 8.588(1) 10.895(2) 995.9(3) 

YSr2Sn5 10.638(3) 8.581(3) 10.886(4) 993.7(6) 

Ba3Pb5
c 11.154(7) 9.049(7) 11.370(5) 1147(1) 

LajSns 10.352(5) 8.290(6) 10.652(2) 914(1) 

a From Guinier data with Si as an internai standard, 23 °C, X = 1.540562 Â. 

b Réf. 4. 

c Réf. 8 gives 11.148, 9.049, 11.368 Â, respectively. 

d Réf. 10 gives 10.35, 8.29, 10.63 Â, respectively. 
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Table 2. Selected Details of Data Collection and Structural Refinement for SrçSns, BasPbs, 
and La3Sn5" 

Sr3Sns Ba3Pb5 La3Sn5 

Formula Weight 856.31 1449.47 1018.18 

Crystal system, space group, Z 

Calc. density, g cm-3 

orthorhombic, Cmctn (No. 63), 4 

5.719 8.391 7.333 

Absorp. coefT. fi (Mo Ko, cm"') 281.93 838.34 271.47 

R. A* 0.036, 0.060 0.042, 0.051 0.036, 0.041 

" Cell dimensions in Table 1. 

» R = E||F0| - |FC||/L|F„|; R w  = [Ew(|F0| -  |Fc|)2/Ew(F0)2]1/2; w = a f \  
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Table 3. Refined atomic positions for S^Sns, BasPbs and Las Ins. 

X y z Be 

StjSQJ 

Snl 0 0.0432(2) 0.25 1.20(4) 

Sn2 0 0.3134(1) 0.4461(1) 1.24(3) 

Sn3 0.1986(1) 0.2907(2) 0.25 1.30(3) 

Sri 0 0.6482(3) 0.25 1.12(5) 

Sr2 0.2974(2) 0 0 1.33(3) 

BaiPb, 

Pbl 0 0.0381(2) 0.25 0.46(7) 

Pb2 0 0.3051(2) 0.4460(1) 0.4(1) 

Pb3 0.2009(1) 0.2847(2) 0.25 0.57(7) 

Bal 0 0.6361(3) 0.25 0.4(1) 

Ba2 0.2069(2) 0 0 0.4(1) 

LaiSn, 

Snl 0 0.0273(2) 0.25 0.81(5) 

Sn2 0 0.3198(2) 0.4509(1) 0.76(7) 

Sn3 0.2082(1) 0.2848(2) 0.25 0.86(5) 

Lai 0 0.6371(2) 0.25 0.66(6) 

La2 0.2019(1) 0 0 0.73(4) 

" Site symmetries in A3M5 phases (Cmcm): Ml 4c mm.; M2 8f m..; M3 8g ..m; A1 4c mm.; A2 8e 2. 
X = 8/3 f [U„(aa*)2 + Un(bb*)2 + U33(cc*)2]. 
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Table 4. Atom Parameters used for A3M5 Extended Hiickel Calculations" 

atom orbital Q, H„ (eV) Cl çi2 C2 

Sr 5s 1.214 -5.69 

5p 1.214 -3.87 

4d 3.047 -3.37 0.7492 0.9885 0.5467 

Ba 6s 1.21 -5.21 

6p 1.21 -3.43 

5d 4.33 -3.99 0.688 1.64 0.595 

La 6s 2.14 -5.15 

6p 2.08 -2.97 

5d 3.78 -4.90 0.7766 1.380 0.4587 

In 5s 1.90 -12.60 

5p 1.68 -6.19 

Sn 5s 2.12 -16.16 

5p 1.82 -8.32 

Pb 6s 2.35 -15.70 

6p 2.06 —8.00 

"Data from Alvarez15 except for H» for Sr, Ba and La (see text). 
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Table 5. Atom Separations (Â) and Overlap Populations in AaTts Compounds (PujPds-type) 
(A = Sr, Ba, La; M = In, Sn, Pb; d< 4.1 Â) 

atom Sr3Sns Ba3Pb5 La3Sn5 La3Ins 

Al- Ml 3.390(4) 0.26 3.635(4) 0.21 3.234(3) 0.23 3.228(3) 0.23 

Al- M2 x2 3.325(2) 0.33 3.497(3) 0.30 3.211(3) 0.29 3.263(3) 0.29 

Al- M2 x2 3.580(3) 0.07 3.732(4) 0.07 3.392(2) 0.09 3.449(2) 0.12 

Al- M3 x2 3.432(6) 0.32 3.600(3) 0.29 3.259(2) 0.31 3.285(1) 0.31 

Al- M3 x2 3.726(9) 0.09 3.889(3) 0.07 3.629(2) 0.10 3.619(2) 0.11 

A2--Ml x2 3.492(2) 0.17 3.679(3) 0.13 3.395(2) 0.16 3.400(1) 0.15 

A2--M2 *2 3.496(8) 0.15 3.650(3) 0.12 3.416(2) 0.15 3.391(2) 0.17 

A2--M2 x2 3.596(7) 0.10 3.766(3) 0.09 3.467(2) 0.11 3.508(1) 0.12 

A2--M3 x2 3.426(3) 0.21 3.596(2) 0.17 3.340(2) 0.19 3.330(1) 0.20 

A2--M3 x2 3.693(1) 0.06 3.835(2) 0.05 3.562(2) 0.08 3.601(2) 0.10 

M1 -M2 x2 3.152(3) 0.20 3.284(3) 0.28 3.235(2) 0.16 3.232(2) 0.29 

Ml -M3 x2 2.997(7) 0.44 3.162(3) 0.45 3.033(2) 0.40 3.147(2) 0.30 

Ml -M31 x2 3.870(4) -0.07 4.053(3) -0.02 3.627(2) 0.04 3.575(2) 0.20 

M2 -Ml  3.152(3) 0.20 3.284(3) 0.28 3.235(2) 0.16 3.232(2) 0.29 

M2 -M21 3.413(3) 0.23 3.732(4) 0.14 3.165(3) 0.41 3.428(3) 0.29 

M2 -M3 *2 3.011(2) 0.51 3.166(2) 0.52 3.053(2) 0.43 3.014(1) 0.57 

M3 -Ml  2.997(7) 0.44 3.162(3) 0.45 3.033(2) 0.40 3.147(2) 0.30 

M3 -Ml* 3.870(4) -0.07 4.053(3) -0.02 3.627(2) 0.04 3.575(2) 0.20 

M3 -M2 x2 3.011(2) 0.51 3.166(2) 0.52 3.053(2) 0.43 3.014(1) 0.57 

" Intercluster 
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Figure 1. [100] (top) and [001 ] (bottom) views of the orthorhombic Pu3Pd5-1ype 
structure of Sr3Sn5. The square pyramidal Sn5 units (CJ are blue and the isolated Sri 
and the more populous Sr2 atoms are red. Significant intercluster contacts are 
shown by light (Sn2-Sn2) and lighter (Snl -Sn3) black lines, the latter being clearer in 
the bottom view, lines, the latter being clearer in the bottom view. 
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Figure 2. A single cluster in La3Sn5 (blue atoms, with Sn2 darker) plus parts of 
neighboring clusters to which it is bonded and the cations that interconnect these, 
Lai (orange) and La2 (red). Line widths for the interconnections are proportional to 
overlap populations for the separate sets, Sn-Sn black and La-Sn, orange-red. 
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Figure 4. DOS and COOP results for La3Sn5. The former on the left represent total (solid), Sn 
(dotted), and La (dashed) components. In the COOP data on the right, the solid line 
represents the dominant La-Sn bonding, the dotted total Sn-Sn, and the dashed total La-La. 



www.manaraa.com

La -In 

total In intercluster 

) total La 

intracluster 

69 -3 

COOP 

Figure 5. The DOS and COOP data for La,In3 with solid, dotted and dashed curves in the DOS showing total and 
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Table S1. Details of data collection and refinement for SraSn^, BaaPbg, LaaSng 

Sr3Sn$ Ba3Pb5 LajSnj 

Formula Weight 856.31 1449.47 1018.18 

Crystal system, space group, Z orthorhombic Cmcm (No. 63), 4 

Unit cell dimensions (A)" 

a 10.644(2) 11.154(7) 10.352(5) 

b 8.588(1) 9.049(7) 8.290(6) 

c 10.895(2) 11.370(5) 10.652(2) 

K(A') 995.9(3) 1147(1) 914(1) 

Calculated density, g cm'3 5.719 8.391 7.333 

Diffractometer Rigaku Rigaku Siemens P4 

Octants, 2âmx (deg) ±liM, 1; 55° li.±kJ: 50° h,k,l; 50° 

Observ. refl. 2665 

unique 1813 (2a,) 1209(3a,) 1040 (3a,) 

indep. (>3CT,) (R1VC) 535 (9.8%) 420(10.3%) 739 

Absorp. coeffic. (Mo Ko, cm"1) 281.93 838.34 271.47 

Rel. trans, coefî. range 0.559-1.00 0.365-1.00 0.496-1.00 

variables 27 27 27 

R. RS 0.036,0.060 0.042,0.051 0.036,0.041 

Largest AF, e"/AJ 3.63,0.88 A to Sn2 3.96, 1.6 A to Pb2 2.8,2.1 A to La2 

GOF 1.83 1.65 2.25 

" Guinier powder pattern data, X= 1.540.562, 23 °C. 

6 R = E||FO| - |Fc||/S|F0|; Rw = [EW(|F0| - |FC|)2/£W(F0)2],/2; W = AF~2. 
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Table S2. Anisotropic displacement parameters" for A]Ms phases 

SnSn< u„ Ui2 u33 U,2 U,3 U23 

Snl 0.017(1) 0.0131(9) 0.0153(9) 0.0000 0.0000 0.0000 

Sn2 0.0167(7) 0.0177(7) 0.0126(6) 0.0000 0.0000 0.0001(6) 

Sn3 0.0152(7) 0.0188(7) 0.0153(6) -0.0014(5) 0.0000 0.0000 

Sri 0.016(1) 0.014(1) 0.013(1) 0.0000 0.0000 0.0000 

Sr2 0.0170(9) 0.0147(8) 0.0178(9) 0.0000 0.0000 -0.0003(7) 

Ba^Pb; 

Pbl  0.009(1) 0.002(1) 0.006(1) 0.0000 0.0000 0.0000 

Pb2 0.006(1) 0.007(1) 0.005(1) 0.0000 0.0000 -0.001(1) 

Pb3 0.005(1) 0.011(1) 0.006(1) -0.002(1) 0.0000 0.0000 

Bal  0.008(2) 0.003(1) 0.004(2) 0.0000 0.0000 0.0000 

Ba2 0.006(2) 0.005(1) 0.005(1) 0.0000 0.0000 -0.001(1) 

La,Sn< 

Snl  0.012(1) 0.008(1) 0.0090(6) 0.0000 0.0000 0.0000 

Sn2 0.0115(8) 0.0105(7) 0.0088(4) 0.0000 0.0000 -0.0002(5) 

Sn3 0.0096(7) 0.0133(7) 0.0097(5) -0.0023(6) 0.0000 0.0000 

Lai  0.0089(9) 0.0080(8) 0.0084(5) 0.0000 0.0000 0.0000 

La2 0.0084(6) 0.0090(6) 0.0105(4) 0.0000 0.0000 0.004(4) 

"T = exp [-2r(l/„AV2 + Unkrb" + UnIcz + 2Uxlhkab' + lU^hl'c +2Uiikl'c)], U,2 = U,3 = UB = 0. 
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Table S3. Details of data collection and refinement for LaaSn^Gao, 

La3Sn4 5Gao4 

Formula Weight 856.31 

Crystal system, space group, Z orthorhombic Cmcm (No. 63), 4 

Unit cell dimensions (A) 

a 10.263(2) 

b 8.2649(17) 

c 10.506(2) 

P(AJ) 891.2(3) 

Calculated density, Mg m~3 7.164 

Diffractomctcr Rigaku 

Octants, 2flimx (deg) ±/i, k, ±1:55° 

Observ. refl. 2212 

unique 1800 (2a) 

indep. (>3a,) (R,ve) 617(15.9%) 

Absorp. cocffic. (Mo Ken mm"1) 27.936 

Rel. trans, coeflf. range 0.2475-1.0000 

extinction coefficient 0.00110(16) 

variables 28 

R. Rw
a 0.036,0.10 

Largest AF, e"/A3 2.43,0.54 A to La2 

GOF 0.774 



www.manaraa.com

68 

Table S4a. Refined atomic positions for LasSn^Gao^ 

x y z U«, occupancy 

LaiSnjsGaoj 

Lal 0.0000 0.1413(1) 0.2500 13(1) 

La2 0.2979 0.0000 0.5000 13(1) 

Snl -0.2042(1) -0.2122(1) 0.2500 15(1) 

Sn2 0.0000 0.5304(2) 0.2500 16(1) 

Sn3 0.0000 0.1827(1) 0.5491(1) 16(1) 79.72(4)% 

Gai  0 .0000 0 .1827(1)  0 .5491(1)  16(1)  20.28(4)% 

Table S4b. Anisotropic displacement parameters" for La3Sn4.6Gao.4_ 

La^SrUftGanj u„ U21 U,3 U,2 U,3 U23 

Lal  0.013(1) 0.010(1) 0.016(1) 0.0000 0.0000 0.0000 

La2 0.012(1) 0.010(1) 0.016(1) 0.0000 0.0000 0.0000 

Snl  0.015(1) 0.015(1) 0.017(1) 0.002(1) 0.0000 0.0000 

Sn2 0.017(1) 0.012(1) 0.018(1) 0.0000 0.0000 0.0000 

Sn3 0.015(1) 0.016(1) 0.016(1) 0.0000 0.0000 0.001(1) 

Gai 0.015(1) 0.016(1) 0.016(1) 0.0000 0.0000 0.001(1) 

"T = exp [-2r(t/„/ra z + U22lrb ' + Ui3lc ' + 2Uxlhka b + 2Unhl c +2U^kl c )], U,2 = Ul3 = UB = 0. 
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CHAPTER 4. AsInPbg (A = K, Rb): A ZINTL PHASE WITH CLUSTERS OF Pb4 

TETRAHEDRA INTERBRIDGED BY ^-In ATOMS. 

Michael T. Klem and John D. Corbett* 

Department of Chemistry and Ames Laboratory —DOE,1 

Iowa State University, Ames IA 50011 

Abstract 

Reaction of elemental In, Pb, and K. or Rb within welded Ta containers at 900 °C 

followed by subsequent annealing at 350 °C gives the new phase AglnPbg (A = K, Rb). The 

title phase crystallizes in the trigonal space group R3m (Z = 3) with the cell dimensions of a 

= 6.8835(6), 6.885(1) c = 37.591 (5), 37.64(2) A for K5InPb8 and Rb5InPb8, respectively. 

The title compound contains clusters composed of two Pb< tetrahedra that are interbridged by 

a lone /i6-ln atom. The InPbg units, which in the isolated case would behave as ideal 40 

electron Wade's rule cluster, are weakly interlinked into sheets in the ab plane by long 

interc luster Pb-Pb interactions. These long (~ 3.5 Â) interactions cause a broadening of the 

valence band and thus generate a number of states at the Fermi level. The compounds are 

metallic (ftz9$ ~ 42 fiQ cm and [(ôp/ôT)/p] of 1.4(2) x 10"1 K"1 for KglnPbg) which is in 

agreement with the expectations provided via the EHTB calculations. 
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Introduction 

Large deltahedral clusters of the group 14 elements have been fairly limited in the 

solid state. The largest cluster to date is the Ttç4" anion which is now known for all tetrel 

elements except for carbon.2 One of the limiting factors to the stability of deltahedral 

clusters of the heavy tetrel elements is the disproportionate size-to-charge ratio. Wade's 

rules for counting electrons states in a given class of clusters (closo, nido, etc.) indicate that 

the charge assigned to a deltahedral cluster is independent of its nuclearity, and therefore, 

large clusters would carry relatively small negative charges.3 This can evidently set up 

situations where the number of cations is insufficient to separate large clusters. Molecular 

chemistry has in the past used large organic cations or units such as cryptated alkali-metal 

cations to achieve effective separation of clusters. In the solid state, larger alkali metal 

cations such as Rb and Cs, or cluster substitution with an electron poorer element has been 

used. It is the later approach, an attempt to substitute the electron poorer (and smaller) 

indium atom for lead into the Pb^ cluster, that led to the synthesis of the title compound. 

Experimental 

The materials and general reaction techniques in welded tantalum tubes have been 

described elsewhere.4,5 An improved method for sample mounting for powder pattern 

measurements was employed. Samples were held between sheets of aluminized polyester 

film by means of a thin centered film of vacuum grease that also served to seal the outer edge 

of the sheets and to prevent decomposition of the air sensitive products.6 All transfers where 

completed in a N% or He-filled glove-box. Samples of A^InPbg (A - K, Rb) where prepared 

by direct fusion of the elements in welded tantalum tubes followed by heat treatment. 
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Synthesis. The compounds AglnPbg (A = K, Rb) were obtained by mixing 

stoichiometric amounts of potassium (Strem, 99.9995%) or rubidium (Strem, 99.999+%), 

indium (Aesar, 99.99%), and lead (Aesar, 99.9999%), allowing these to react 900 °C and 

then to anneal for 3 weeks at 350 °C. The results were brittle, black crystals. A quantitative 

yield (>95% by powder pattern) of KsInPbg was obtained once the stoichiometry was known. 

In most cases, the yield of RbglnPbg was 80% according to Guinier powder pattern data with 

the remainder being elemental lead. Attempts to substitute T1 or Ga for In were unsuccessful 

as was the attempted use of the larger cation Cs. 

X-ray diffraction. Powder diffraction data from an Enraf-Nonius Guinier camera 

and Cu K«i radiation were used for phase identification. The films were then first compared 

semiquantitative^ with the patterns calculated for phases with known structures. The 

compositions of the products were then estimated visually from relative powder pattern 

intensities, considering the unit cell symmetry and contents as well. The cell dimensions of 

both phases as refined from powder data are listed in Table 1. 

Several black crystals of KsInPbg were isolated, sealed into thin-walled capillaries, 

and checked by Laue photographs. Diffraction data from one specimen were then collected 

at room temperature using a Rigaku AFC6 diffractometer with monochromated Mo Ka 

radiation. Routine indexing of 25 centered reflections gave a R-centered trigonal cell. The 

absence of other systematic extinctions led to the possible space groups R3 m, R3, or R3. 

The space group R3m was chosen and this assignment was confirmed by a refinement 

carried out with the aid of the TEXSAN package.7 The data were corrected for absorption 

empirically according to three V'-scans of strong reflections with different 9 values. The final 

residuals were R(F)/Rw = 5.7/7.0 % with the largest residual in the AF map of 3.02 e"/A3 
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located 0.70 Â from Kl. The phase RbglnPbg was identified via its powder pattern, and 

lattice parameters were refined using the KsInPbg line assignments as a model. 

Selected cristallographie and refinement data are given in Table 2, and more detailed 

information and displacement ellipsoid parameters are given in the Supporting Information, 

Tables S I, S2. Refined atom positions are listed in Table 3 and the bond distances are listed 

in Table 4. 

Theoretical. Theoretical calculations were made over 326 k-points in the irreducible 

wedge with the aid of the CAESAR EHTB program of Whangbo, et al.8 Only the lead and 

indium atoms were included (Hi, and ft for Pb 6s: -15.70 eV and 2.35, for Pb 6p: -8.00 eV 

and 2.06, for In 5s: -12.60 eV and 1.903, and for In 5p: -6.19 eV and 1.677).9 Calculations 

were carried out on the isolated cluster, the full structure, and a modified version of the full 

structure where the individual InPbg clusters were separated by over 5 Â in the ab plane. 

Property Measurements. Resistivities of KsInPbg were measured by the 

electrodeless Q method10 on 44.3 mg that had been sieved to 250 - 425 /*m powder and 

diluted with chromatographic AI2O3. Measurements were made at 34 MHz over 120 - 240 

K. The resistivity of KsInPbg extrapolated to 298 K was 42 /xfl cm with a temperature 

coefficient [(ôp/ôT)/p] of 1.4(2) x 10"' K~l. The absolute resistivities may conceivably be off 

by a factor of two or three. 

Results and Discussion 

Description. The basic formula unit in this phase is pairs of Pb tetrahedra that are 

interbridged by a fit- In atom to form capped and centered InPbg trigonal antiprisms (DM) 

with the 3-fold axis along c. The unit cell is shown in figure 1. The Pb tetrahedra are non-
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regular with the apex to base bond distance [(36-Pbl) - (4Z»-Pb2)] 0.3 Â shorter (3.038 Â) 

than the corresponding Pb2-Pb2 distance (3.3329 Â). The Pb2-Pb2 basal contacts are also 

approximately 0.25 Â longer than the distances found in the Pb# tetrahedral clusters of KPb.11 

The In atom is positioned 3.14 Â between the clusters and sits on the 3 axis which also 

passes through the apical Pbl atoms. The Inl atom links the Pb# tetrahedra in an 

antiprismatic fashion (D^) which gives rise to their staggered configuration, figure 2. 

The cation arrangement about the InPbg clusters is also of interest. The A1 cation is 

situated between and copianar with In in three parallel InPbg clusters and bridges In-Pb basal 

edges on each, figure 3. The A2 cation lies between three in-plane Pb# tetrahedra and caps a 

face on each cluster along with being terminal to a single Pb apex atom of a neighboring 

cluster. The A3 cation lies between two layers of InPbg clusters and bridges an apex-basal 

edge on 6 Pb# clusters (3 above, 3 below). The first two cations rest in voids with radii 

approximately 3.88 Â while the A3 cations with CN = 12 are in a void whose radius is 4.27 

Â. This represents an increase in the void space volume of approximately 25% and is 

probably a contributing factor to the elongation of the A3 ellipsoid in the U33 direction, figure 

3. 

The occurrences of vertex-fused connections are uncommon in main group clusters. 

Some examples are known in molecular chemistry with aluminum or silicon as the central 

atom linking two caps of nido-carboranes in a monocapped square antiprism configuration or 

pentagonal bypyramids, respectively.12 Geometric similarities exist in the solid state as well 

with examples including the mixed alkali metal compounds A'?A"Eg (E = Ge, Si) where the 

smaller cation occupies a ̂ -capping position between two E# tetrahedra (in a staggered 

configuration).13,14 Analogous to the role of In here, recently two examples of transition 
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metal linked tetrel tetrahedra have been synthesized, CseZnGeg and K^CdPdg.15,16 The 

former contains isolated clusters of two Ge# tetrahedra linked via a Ht-Zn atom in which the 

Ge4 tetrahedra are eclipsed and the later contains a (Pb4CdPb4)Cd(Pb4CdPb4) dimer where 

the Pb# tetrahedra are staggered. Other known cases of heteroatomically linked tetrahedra of 

the tetrel elements include K#Au(TISnj) and the isoelectronic Aj(AuTt4) (A = K, Rb, Cs; Tt = 

Sn, Pb).17,18 These phases contain infinite one-dimensional chains of M# tetrahedra that are 

interbridged on opposed edges by a ^#-gold atoms to form J[Au(Tt»)]x". 

Bonding. The electronic structure of an isolated InPbg5" cluster can be understood 

with the aid of extended-Hiickel calculations and Wade's rules. According to Wade, the 

number of skeletal electrons required for closed shell bonding in two nido-clusters of Pb# 

each (two tetrahedra) would be equal to 2 (2 x 4 + 4) = 24 electrons. Each lead atom 

contributes its two valence p-electrons, and the indium donates three electrons (essentially an 

In3+) for a total of 19 skeletal electrons. In order to satisfy the bonding requirements, the 

cluster requires more electrons which come from the five alkali-metal cations. The 

molecular orbital calculation carried out confirms Wade's assumptions for the isolated 

cluster, figure 4. 

The results of the molecular orbital calculation and Wade's rules analysis would 

suggest that this compound should be a valence compound, and hence a semiconductor. The 

measured resistivity for KsInPbg was 42 gtl cm with a positive temperature coefficient of 

0.14 K"1 indicating metallic behavior, figure 5. This is in contrast to the expectations 

provided by the simple molecular orbital treatment and requires a deeper analysis. 

Further calculations were then carried out on the full structure minus the cations. The 

density of states shows a clear separation between the s and p bands of lead with a small 



www.manaraa.com

75 

contribution from the s and p orbitals of indium, figure 6. The density of states plot also 

reveals a small number of states at the Fermi level with no evidence of a band gap. The s 

band of lead dominates from -20 to about -13.5 eV with a small contribution from indium -

15.5 eV. The p band for lead starts at -12.5 eV and extends past the Fermi level. At the 

Fermi level, the px and py orbitals on lead are the dominating contributions. 

In order to understand the results from the EHTB calculations, a more critical look at 

the full structure of As InPbg (A = K, Rb) is required. Upon closer examination, there are 

moderately long intercluster contacts between Pb2 atoms of neighboring clusters (at 3.55 vs 

3.33 À for the intracluster Pb2-Pb2 bonds). This results in InPbg clusters linked via Pb2-Pb2 

intercluster bonds in the ab plane to form 2-dimensional sheets of clusters, figure 7. These 

long intercluster bonds still have a significant amount of overlap according to EHTB 

calculations (0.25 for each of the intercluster Pb2-Pb2 (3.6 Â) contacts versus 0.57 and 0.11 

for each of the intracluster Pbl-Pb2 (3.0 Â) and Pb2-Pb2 (3.3 Â) respectively). The 

relatively low overlap population of the intracluster Pb2-Pb2 linkages is due to the 

occupation of antibonding states by the extra electrons. These conclusions were made using 

the default orbital coefficients for Pb and In as given by Alverez, and have been 

demonstrated to give meaningful results in related systems. Linkages of one sheet of clusters 

to another via the apical Pbl atoms are precluded by the long separation of 4.90 Â in the c 

direction. 

The intercluster contacts are responsible for a broadening of the valence band. This 

broadening is evident when calculations are carried out starting from a case where the 

clusters are isolated with a intercluster distance greater than 5 À, figure 8. As the clusters are 

brought together, the p band visually broadens until the valence band crosses the Fermi level. 
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A similar type of behavior was noticed in K&PbgCd, a phase that contains (Pb^Cds 

oligomers [essentially 2 InPbg-like clusters with a additional cadmium atom linking the two 

together], where the oligomers themselves have relatively long intercluster bonds (3.57 À 

between intercluster lead atoms). The calculation, without cations, also shows the 

optimization of the bonding within the InPbg5" cluster, in accordance with the results from the 

MO and Wade's rules analysis. 

With the intercluster bonding in mind, one can begin to understand the reason for 

having a positive density of states at the Fermi level, even though the isolated cluster itself 

conforms to a Wade's rules assignment. Each exobond between neighboring Pb2 atoms 

would lower the total number of electrons required for stabilization as predicted by Wade. 

One can think of this as taking the InPbg5* and oxidizing it to form intercluster bonds. When 

the cluster is oxidized to form these linkages, it is not surprising that there is now a density of 

states at the Fermi level. Since the electron count has remained the same, the required 

number of electrons has decreased causing what were formerly empty antibonding orbitals to 

become filled. 

The COOP curves clearly show that the cluster is filling up antibonding states around 

-8.2 eV, well before the Fermi level at -5.6 eV. These antibonding states are primarily within 

the Pb2-Pb2 intracluster bonds. This could account for the low overlap population of 0.11 

for the shorter (3.33 Â) Pb2-Pb2 intracluster bonds over the longer Pb2-Pb2 intercluster 

bonds (0.25 at 3.55 Â). The In-Pb bonding appears to be unimportant around Fermi, but is a 

major bonding contributor to the peaks at -15.5, -14.5, and -10.5 eV. Interestingly enough, 

the intracluster bonding appears to be optimized at a point that is 6 electrons fewer than in 
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the isolated cluster. The extra electrons are assumed to be going into the 2-D net shown in 

figure 7. 

Conclusions 

The InPbg5* cluster, in the isolated case, represents a new type of Zintl cluster in the 

heavy tetrel elements. The InPbg5" cluster type is interesting because it is one of the few 

known vertex-fused polyhedra known in Zintl chemistry. The fact that the clusters are not 

isolated is probably because of packing effects introduced by the size and relatively few 

cations about the clusters. One's ability to rationalize the cluster geometry with the observed 

electron count enables one to make this assignment even though the compound is metallic 

due to intercluster interactions. 
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Table 1. Cell Parameters (Â, Â3) of Trigonal AsInPbg-type phases (A = K, Rb)a 

compound a c V 

KsInPbg6 6.8835(6) 37.591(5) 1542.5(5) 

RbsInPbg 6.885(1) 37.64(2) 1543(3) 

a From Guinier data with Si as an internal standard, 23 °C, X = 1.540562 Â. 
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Table 2. Selected Details of Data Collection and Structural Refinement for KsInPbg 

KsInPbg 

Formula Weight 2959.19 

Crystal system, space group, Z trigonal, R3m, 3 . 

Calc. density, g cm-3 8.508 

Absorp. coeff. ft (Mo Ka, cm™1) 902.59 

R, R„" 0.057, 0.070 

" R = E||F0| - |FC||/E|F0|; Rw = [Ew(|&| - |Fc|)2/£w(F0)2]l/2; w = of2 .  
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Table 3. Refined atomic positions for KsInPbg. 

X  y  Z  Beq 

KsInPbg 

Pbl 0.0000 0.0000 0.12864(8) 2.35(4) 

Pb2 0.1615(1) 1  - X  0.06592(4) 1.42(2) 

Inl 0.0000 0.0000 0.0000 1.19(7) 

Kl 0.6667 0.3333 0.0153(4) 1.5(2) 

K2 0.0000 0.0000 0.2192(5) 2.1(2) 

K3 0.0000 0.0000 0.5000 4.0(5) 

aSite symmetries in KsInPbg(/?3m): Pbl 6c 3m, Pb2 18/z .m, Inl 3a 3m, Kl 6c 3m, K2 6c 

3m, K3 3b 3 m 

bBeq = 8/3 7T(Un(aa*)2 + U22(bb*)2 + LWcc*)2 + 2Ui3(aa*cc*)cos /3 
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Table 4. Atom Separations (Â) out to 4 À in KsInPbg. 

Atom Pair KsInPbg 

Pbl -Pb2 x3 3.041(4) 

Pb2 - Pb2 x2 3.329(4) 

Pbl -K2 x3 4.004(4) 

Pbl — K2 3.40(2) 

Pb2 - Inl 3.135(2) 

Pb2 - Pb2a 3.542(2) 

Pb2 - Kl x2 3.93(1) 

Pb2 - Kl 3.67(2) 

Pb2 - K2 x2 3.88(1) 

Inl -Kl x6 4.008(4) 

"intercluster 
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c 
* 

->b 

cb CD cb CD 

Figure 1. [ÎOO] view of the KsInPbg structure type. The Pb, In, 
and K atoms are represented by black, grey, and white spheres 
respectively. The intercluster contacts between InPb8

5 clusters in 
the same plane are not shown. 
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3.329(4) 

Figure 2. A view of the isolated cluster InPb/* the Pb2 atoms on 
each tetrahedra adopt a staggered configuration relative to one 
another. The In atom sits on a 3 axis that passes through the apical 
Pbl atoms. This gives rise to a local D3d point group symmetry. 
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Figure 3. The cation coordination environments of KsInPb8 are 
illustrated above. The Kl, K2, K3 environments are shown in the 
upper left, upper right, and lower middle respectively. The larger 
cavity of the K3 atom gives rise to a larger ellipsoid. The K2 
ellipsoid is compressed slightly because of the short contact of the 
terminal Pbl atom in the lower InPbg cluster. All ellipsoids drawn 
at 99.9%. 
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Figure 4. MO diagram for the isolated InPb8
5 cluster with the 

corresponding fragment orbitals from two Pb4 tetrahedra and an 
isolated In atom. 
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Figure 5. The microwave resistivity of a 44.3 mg sample of Kg InPbg with the best fit is shown above. The 
room temperature resistivity of the sample was extrapolated to be 42 jiQ • cm The resistivities determined by 
this method are normally accurate within a factor of two, but gives good temperature dependencies. 
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FIGURE 6: Density of States and COOP curves for InPb8
5 with the solid, dotted, and dashed 

lines showing the toal and partial Pb and In p data, respectively. In the COOP results, the solid 
line gives the total intracluster and the the dotted line representing the intercluster values. 
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Figure 7. A partial layer of InPbg clusters at z = 0 (for the In atom) 
with the intercluster bonding shown. The intercluster bonding that 
is above and below the plane are represented by light and dark grey 
triangles, respectively. The Pb atoms are represented by black 
spheres and the In atoms by the lighter grey spheres. The 
intercluster seperation is 3.55 Â (vs 3.33 Â for the intracluster 
bonds) between neighboring Pb2 atoms. 
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FIGURE 8: Densities of States and COOP curves for InPb8
5 in which the intercluster separation has been 

increased. The solid DOS line represents the total density of states. The solid, dotted, and dashed lines in 
the COOP represent intracluster overlap, Pb-Pb overlap, and In-Pb overlap respectively. 
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Table S1. Details of data collection and refinement for KsInPbg 

KsInPbg 

Formula Weight 961.21 

Crystal system, space group, Z trigonal, R.3 m, 3 

Unit cell dimensions (Â)" 

a 6.8835(6) 

c 37.591(5) 

P(AJ) 1543.9(2) 

Calculated density, g cm"1 8.508 

Diffractometer Rigaku 

Octants, 2tfmax (deg) ±h.±k, 1:55° 

Observ. refl. (> 2a,) 2563 

unique 502 

Absorp. coeflic. (Mo Ko, cm"1) 902.59 

Rel. trans. coefF. range 0.5678 - 1.0000 

variables 20 

R. Rj 0.057,0.070 

Largest AF, e7À3 3.02,0.70 A to Inl 

GOF 1.69 

" Guinier powder pattern data, X= 1.540.562, 23 °C. 

bR = E[|F0| - |FC||/E|F0|; Rw = [Ew(|F0| - |Fc|)2/Ew(F0)2]l/2; w = af\ 
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Table S2. Anisotropic displacement parameters for KsInPbg phases 

KsInPba U„ u22 U33 u12 U,3 u23 

Pbl 0.038(1) 0.038 0.012(2) 0.019 0.0000 0.0000 

Pb2 0.0199(5) 0.020 0.0197(7) 0.0139(6) 0.0002 -0.0002(3) 

Inl 0.019(2) 0.02 0.007(4) 0.0095 0.0000 0.0000 

Kl 0.026(5) 0.026 0.007(8) 0.013 0.0000 0.00000 

K2 0.031(5) 0.031 0.017(9) 0.0155 0.0000 0.0000 

K3 0.04(1) 0.04 0.08(3) 0.02 0.00000 0.00000 

= exp(-2*i(a"zU11h'i + b"'U22k' + c'"l U33I' + 2a*b*U,2hk _ 2a*c*U,3hl + 2 b*c*U23kl)) 
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CHAPTER 5. SYNTHESIS, STRUCTURE, AND BONDING IN THE APPARENT 
ZINTL PHASE KsAs3Pb3. 

Michael T. Klem, and John D. Corbett* 

Department of Chemistry and Ames Laboratory —DOE,1 

Iowa State University, Ames LA 50011 

Abstract 

The title phase was synthesized by direct fusion of a stoichiometric amount of the 

elements at 900°C for 24 hours and then annealed at 650 °C for 3 weeks. The compound 

crystallizes in an orthorhombic space group, Prima, Z = 4, with a = 19.451(6), b = 12.164(3), 

c = 6.581(1) Â. The compound is made up of AsjPb;^ crown clusters that can be likened to a 

6-atom /ryp/io-cluster based on the tricapped trigonal prism parent as the closo structure. 

These crowns are connected via intercluster bonds to form infinite chains down the b axis. 

Extended Huckel theory predicts that this phase should be semiconducting which is 

confirmed by microwave resistivity measurements (paos = 103 #tfi cm; (5p/ÔT)/p = -0.14(3) 

K"1 ). 
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Introduction 

Large deltahedral clusters of the tetrel elements have been fairly limited in the solid 

state. One of the largest cluster currently is the Tt<>4" anion which is now known for all 

elements in Group 14 except for carbon.2 One of the limiting factors to the stability of 

deltahedral clusters of the heavy tetrel elements is the disproportionate size to charge ratio. 

Wade's rules for counting electrons states that the charge assigned to a deltahedral cluster is 

independent of its nuclearity, and therefore, large clusters would carry relatively small 

negative charges.3 This can set up situations where the number of cations is insufficient to 

separate large clusters. Molecular chemistry has in the past used large organic or cryptated 

alkali-metal cations to achieve effective separation of clusters. Alternatively, one can reduce 

the overall charge of a cluster by the substitution of an electron-rich element (e.g. a 

pnictogen) to contribute more electrons to the skeletal bonding of a cluster, and hence reduce 

its overall charge. This would lead to a reduction in the number of cations required for 

isolation and might provide a pathway for the synthesis of new heteroatomic clusters of the 

tetrel elements, but polymerization is a common alternative route to compensate for 

inadequate separations. 

The heteroatomic anions of group 14 and 15 are relatively unexplored, but the triel 

(group 13) and group 15 systems are quite rich in phases.4 The group 14/15 heteroatomics 

that are known for neat systems are the phosphide phases AsGePnj (A = Li, Na; Pn = 

pnictogen).5 Solution methods, however, have been successful in isolating tetrahedral clusters 

ofSn2Bi2
2* and PbiSbi2" anions with cryptated K cations.6 This approach has led to the 

formation of KsAsgPb], a new phase that consists of AsgPb] crown shaped clusters that 

possess intercluster bonds to form 1-dimensional chains. 
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Experimental 

Synthesis. The materials and general reaction techniques in welded tantalum tubes 

have been described elsewhere.7,8 An improved method for sample mounting for powder 

pattern measurements was employed. Samples were held between sheets of aluminized 

polyester film by means of a thin centered film of vacuum grease that also served to seal the 

outer edge of the sheets and to prevent decomposition of the air sensitive products.9 All 

transfers where completed in a N2 or He-filled glove-box. The compound KjAsjPb] was 

obtained by allowing stoichiometric amounts of potassium (Strem, 99.9995%), arsenic 

(Aesar, 99.99%), and lead (Aesar, 99.9999%), allowing these to react at 900°C, quenched, 

and then the products annealed for 3 weeks at 650°C. The resulting products were brittle and 

black. Initially, single crystals were isolated from a reaction mixture that was loaded as 

KjAsPbg. Reactions loaded on stoichiometry typically yielded 80-90% of the title phase with 

the remainder being a combination of elemental Pb and KPb. There are 5 known As / Ta 

binaries, but there was no obvious indication that As was reacting with the Ta tubing. 

X-ray diffraction. Powder diffraction data from an Enraf-Nonius Guinier camera 

and Cu K*, radiation were used for phase identification. The films were then first compared 

semiquantitative^ with the patterns calculated for phases with known structures. The 

compositions of the products were then estimated visually from relative powder pattern 

intensities, considering the unit cell symmetry and contents as well. 

Several black crystals of K^AsjPb] were isolated and placed into thin-walled 

capillaries, and checked by Laue photographs. Diffraction data from one specimen were then 

collected at room temperature using a Rigaku AFC6 diffractometer with monochromated Mo 

Ka radiation. Routine indexing of 25 centered reflections gave a primitive orthorhombic 
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cell. Systematic extinctions led to the assignment of Pnma. The space group assignment was 

confirmed by a refinement carried out with the aid of the TEXSAN package.10 The data 

were corrected for absorption empirically according to three V'-scans of strong reflections 

with different 6 values. The final residuals were R(F)/Rw = 3.2/3.7 % with the largest 

residual in the AF map of 1.694 eVÂ3 located 0.86 Â from K2. 

Selected crystallographic and refinement data are given in Table 2, and more detailed 

information and displacement ellipsoid parameters are given in the Supporting Information, 

Tables SI and S2. Refined atom positions are listed in Table 2 and the bond distances are 

listed in Table 3. 

Theoretical. Theoretical calculations were made over 326 k-points in the irreducible 

wedge with the aid of the CAESAR EHTB program of Whangbo, et al." Only the lead and 

arsenic atoms were included (Hi, and ft for Pb 6s: -15.70 eV and 2.35, for Pb 6p: -8.00 eV 

and 2.06, for As 5s: -12.60 and 2.23, and for As 5p: -6.190 and 1.89).'" Calculations were 

carried out on both an isolated As^Pb^~ cluster and the full anion structure. 

Property Measurements. Resistivities of KjAsaPb] were measured by the 

electrodeless Q method9 on 43.6 mg that had been sieved to 250 - 425 /zm powder and 

diluted with chromatographic AI2O3. Measurements were made at 34 MHz over 120 - 240 

K. The resistivity of KgAsgPb] extrapolated to 298 K was 103 /xfi cm with a temperature 

coefficient [(ôp/ST)/p] of -0.14(3) K-1. The absolute resistivity may be off by a factor of two 

or three. 



www.manaraa.com

98 

Results and Discussion 

Description. The basic formula unit consists of AsjPbs "crown" clusters that are 

linked via intercluster Pbl-Pbl bonds to form chains that propagate down the b axis, figure 1. 

The crowns consist of a base formed by three Pb atoms with the points of the crown being 

defined by As atoms that bridge Pb-Pb edges, figure 2a. The cluster possesses Cs symmetry 

because of the unique function of As, but is close to the ideal Cjv assignment. The base of 

the lead triangle is 3.205(2) Â (Pbl-Pbl) and the sides are 3.324(2) À (Pbl-Pb2). The 

arsenic atoms then cap each edge of the Pb triangle. The shorter Pbl-Pbl edge is bridged by 

an Asl atom at 2.817(4), and the Pb2-Pbl edges are bridged by As2 atoms at 2.761(3) À and 

2.854(3) Â to the neighboring Pbl and Pb2 atoms respectively. The resulting crowns are 

then linked via longer Pbl-Pbl intercluster bonds (3.366(2) À) to form chains of AsgPb) 

clusters along the b direction, figure 2b. The apical Pb2 atoms alternate pointing up and 

down with respect to the a axis as the chain propagates down b. The chains are well 

separated from one another with a minimum distance at 5.14 À. The cations serve their 

expected role by bridging edges and faces about the AsjPb] crown clusters. The Kl (CN 3) 

cations cap the triangular face defined by the three cluster As atoms, K2 (CN 6) caps 2 As 

and 1 Pb atom for two separate chains, K3 (CN 3) bridges the As2 atoms between two 

AsaPba clusters, and K4 sits in a void defined by 4 AsaPb] clusters (3 within a chain and one 

above). 

Similarities exist between the AsjPb] motif in the title phase and the one present in 

CssInaAs.».12 This phase contains both chains and layers with the same overall composition 

of [In3 As,»]5'. This unit is quite similar in appearance to the title phase but contains an extra 

As atom that caps the open In] triangular face opposite the crown points. 
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Bonding. The electronic requirements for an isolated AsaPbs5" cluster can be 

deduced from Wade's rules. The AsjPbs5" crowns would correspond to a hypho cluster (i.e. 3 

vertices removed from the closo D#, parent) with the parent being the tricapped trigonal 

prism, PboAs). According to Wade's rules, the number of skeletal electrons required for 

closed shell bonding of a hypho-cluster would be equal to 2n + 8 or 20 electrons in this case. 

Each lead atom would contribute its 2 valence electrons and arsenic donates its 3 valence 

electrons for a total of 15 skeletal electrons. In order to satisfy the bonding requirements, the 

isolated cluster requires five more electrons which come from the alkali-metal cations. 

Molecular orbital calculations provide evidence for this assumption for an isolated cluster. 

Complications arise when one takes into consideration the two intercluster bonds on 

each of the As^Pb^ clusters. According to Wade (or anyone else), each exo-bond should 

lower the electronic requirements of the cluster by one. This leaves the compound two 

cluster electrons in excess, and to be accounted for. Additional calculations were carried out 

on the full structure minus the cations. The results (DOS AND COOP) are shown in figure 

3. The density of states plot shows that at the Fermi level a small band gap is opening (solid 

line). This gap, it is hypothesized, should increase when K. bonding / antibonding states are 

allowed to mix in. The As s band (dotted) starts before -20 eV and continues up to 

approximately -14 eV, and the Pb s band (dashed-dot) behaves similarly. There is clearly a 

substantial amount of mixing between the As s and Pb s orbitals. The As p band (dashed) 

begins around -15eV and continues up to -10 eV, and the Pb p band (dash-dot-dot) starts 

around -13 eV and continues to past Fermi. The As p orbital dominates from -13 eV to -10 

eV at which point the Pb p gains dominance. There is a good amount of mixing between the 

As p and Pb p until about -8 eV above which point only Pb p is dominant. 



www.manaraa.com

100 

The COOP curve for the AsaPbs5" cluster (solid line) show that weakly antibonding 

states are being populated around Fermi. These states are prominently antibonding between 

As-Pb (dash-dot) with the majority being As2-Pb2 antibonding states from -8 eV to Fermi 

level. There are also some antibonding states arising from the Pbl-Pbl intracluster bonds 

from -9 to -8 eV. There is minimal contribution from antibonding states from Inl-Inl 

intercluster bonds until Fermi. Interestingly, at approximately -9.5 eV, the As^Pb^ cluster 

net bonding is optimized. This corresponds to 18 skeletal electrons per AssPbs5* cluster. This 

is in agreement with the predictions afforded by Wade's rules for the six atom hypho-cluster 

with two exobonds. 

The effect of populating these intracluster antibonding states is evident in the overlap 

populations. The overlap population for the intercluster Pbl-Pbl contacts at 3.37 Â is 0.37, 

while for the average intracluster Pb-Pb contacts at 3.26 Â is 0.20. This is an 85% increase 

in overlap population for a 0.1 À increase in bond distance. Since the intercluster Pb-Pb 

antibonding states are not being populated, this is not surprising. The average overlap 

population for As - Pb also remains relatively high at 0.47. 

The results of the extended Hiickel analysis would suggest that this phase has the 

potential to be a valence compound and exhibit semiconducting behavior. The measured 

microwave resistivity for KsAsaPbj was 103 /ifi cm with a negative temperature coefficient 

of -0.14 K*1 adding support for this assumption. 

Conclusions 

The AsaPb]5" cluster, in the isolated case, represents a new type of Zintl cluster in the 

heavy tetrel elements. The As^Pb^~ cluster type represents an expansion of the known 
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heteroatomic Zintl clusters of the tetrel elements. The large cluster atoms and the relatively 

few cations is a possible cause for the 1-dimensional chain formation. 
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Table 1. Selected Details of Data Collection and Structural Refinement for KjAsaPba 

KgAsjPb] 

Formula Weight 1041.86 

Crystal system, space group, Z 

Unit cell dimensions (Â) 

a 

V(A3) 

Calc. density, g cm -3 

orthorhombic, Pnma, 4 

19.451(6) 

12.164(3) 

6.581(1) 

1557.0(6) 

4.444 

Absorp. coeff. fi (Mo Ka, cm ') 400.37 

R. Rw" 0.032,0.037 

" R = E||Fo| - |Fc||/i:|F0|; Rw = [Ew(|F0| - IFS^HFoYV'^ vv = af\ 
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Table 2. Refined atomic positions for K.5AS3PIÎ3. 

X y Z Beq 

KsASjPbj 

Pbl 0.04435(5) 0.11826(7) 0.4794(1) 1.55(2) 

Pb2 0.19349(8) 0.2500 0.4397(2) 1.80(3) 

Asl 0.9567(2) 0.2500 0.2410(5) 1.46(7) 

As2 0.1526(1) 0.0534(2) 0.2361(4) 1.51(5) 

K1 0.0000 0.0000 0.0000 1.9(2) 

K2 0.1033(5) 0.2500 0.950(1) 1.8(2) 

K3 0.1788(3) 0.9545(5) 0.7293(8) 2.3(1) 

K4 0.1215(6) 0.7500 0.261(1) 3.5(2) 

aBcq = 8/3 f(U, i(aa*)2 + U22(bb*)2 + U33(cc*)2 
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Table 3. Atom Separations (Â) in KsAsjPba. 

atom pair distance atom pair distance 

Pbl -Pbl 3.205(2) Asl -K3 x2 3.630(8) 

Pbl -Pbl 3.366(2) Asl - K4 3.64(1) 

Pbl - Pb2 3.324(2) Asl -K4 3.61(1) 

Pbl - Asl 2.817(4) As2 - K.1 3.413(3) 

Pbl - As2 3.761(3) As2-K2 3.191(6) 

Pbl - K.1 x2 3.573(1) As2 - K3 3.582(7) 

Pbl -K2 x2 3.671(7) As2 - K3 3.280(8) 

Pbl -K3 3.676(7) As2 - K3 3.499(7) 

Pbl -K4 3.98(1) As2 - K4 3.744(3) 

Pb2 - As2 x2 2.854(3) Kl - K2 x2 3.660(5) 

Pb2 - K2 3.789(8) Kl - K3 x2 3.947(7) 

Pb2 -K2 3.668(8) Kl - K4 x2 4.218(8) 

Pb2 -K3 x2 3.778(7) K2-K3 x2 4.146(8) 

Pb2 - K3 x2 4.078(6) K2-K4 4.59(2) 

Pb2 -K4 4.18(1) K3-K3 x2 4.440(9) 

Asl -K1 x2 3.532(2) K3-K4 4.11(1) 

Asl -K2 3.44(1) K3-K4 4.44(1) 
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Figure 1. The [001] view of the full structure of K5As,Pb3 is illustrated above. The Pb, 
As, and K are represented by black, grey, and white circles respectively. 
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Asl 
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761(3) 

.324(2) 
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B.) 

Figure 2. A.) The isolated cluster of As3Pb3
$* is shown with Pb and As 

represented by black and grey spheres respectively. B.) The infinite chain 
running down the b axis is shown. 
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Figure 3. As,Pb* DOS and COOP curves. In the density of states plot, the As s, As p, Pb s, and Pb p orbital are 
represented by dotted, dashed, dash-dot, and dash-dot-dot lines respectively. In the COOP curve, the cluster is shown 
by the solid line, and the intracluster Pb, intercluster Pb, and As Pb interactions are represented by dashed, dotted, and 
dash-dot curves respectively. 
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Figure 4. The microwave (Q's) resistivity of a 43.6 mg sample of K,As,Pb, with the best fit 
shown. The room temperature resistivity of the sample was an extrapolated 103 nQ • cm. 
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Table S1. Details of data collection and refinement for KjAsaPb] 
Formula KsAs3Pbj 

Formula Weight 

Crystal system, space group, Z 

Unit cell dimensions (A) 

K(A3) 

Calculated density, g cm"1 

Diffractomctcr 

Octants, 20mai (deg) 

Obscrv. rcfl. (> 2a,) 

unique 

Absorp. coefTic. (Mo Ka, cm"1) 

Rel. trans, coeff. range 

variables 

R. Rw
a 

Largest AF, e7À3 

GOF 

1041.86 

orthorhombic, Pnma, 4 

19.451(6) 

12.164(3) 

6.581(1) 

1557.0(6) 

4.444 

Rigaku 

±h,±k, I; 55° 

9898 

2652 (RiIU = 0.232) 

400.37 

0.1839-1.0000 

58 

0.032,0.037 

1.694 at 0.86 A from K2 

1.16 

aR = EIIFol - |FC||/E|F0|; Rw = [EW(|F0| - |FC|)VEW(F0)2],/2; W = 
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Table S2. Anisotropic displacement parameters for KgAsaPb; phase." 

KjAsiPb^ u„ u22 u33 Ui2  U,3 U23 

Pbl 0.0209(5) 0.0217(3) 0.0162(3) -0.0010(5) 0.0009(4) 0.0019(4) 

Pb2 0.0177(8) 0.0289(7) 0.0219(6) 0.0000 -0.0043(6) 0.0000 

Asl 0.014(2) 0.022(2) 0.019(1) 0.0000 -0.003(2) 0.0000 

As2 0.017(2) 0.022(1) 0.018(1) 0.004(1) -0.001(1) -0.002(1) 

K1 0.021(5) 0.034(4) 0.019(4) -0.004(4) -0.001(4) -0.004(4) 

K2 0.030(5) 0.024(4) 0.014(3) 0.0000 -0.001(4) 0.0000 

K3 0.019(3) 0.042(3) 0.028(3) 0.003(3) 0.001(3) 0.005(3) 

K4 0.040(7) 0.064(7) 0.031(4) 0.0000 0.004(5) 0.0000 
aT = exp(-2;t2(a*2ui lh^ + b*2U22k^ + c*2u33l2 -+- 2a*b*Ui2hk + 2a*c*Ui3hl + 
2b*c*U23kl)) 
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CHAPTER 6. Na23ln4o.4(i)Pd2.5i(2)» SOME UNRESOLVED PROBLEMS. 

Michael Klem and John D. Corbett* 

Department of Chemistry and Ames Laboratory —DOE,1 

Iowa State University, Ames IA 50011 

Abstract 

Reaction of the elements within welded Ta containers at 800 °C followed by 

subsequent annealing for two weeks gave the new phase Na23ln4o.4(i)Pd2.si(2). The title phase 

crystallizes in the hexagonal space group P6/mmm (Z = 3) with cell dimensions of a = 

16.233(2) and c = 15.852(3) Â. This phase appears to be isostructural to the unpublished 

Na23In38.4Zn4.6- The major structural features include a 12-bonded-c/oso-In 12 icosahedron, a 

15-bonded-c/oso-Ini5 cluster, and an 18-bonded-21 -atom spacer. If standard Zintl-

Klemm/Wade's rules are applied, the title phase has 293.4(6) electrons per unit cell, while 

the predicted electron count is 292 or 296 depending on the occupation of a non-bonding 

orbital in the Inis cluster. This former is intermediate between the values inferred from the 

other known isostructural phases Na23ln38.4(2)Zn4.6 and Na23lii39.8(i)Au3.4, 294.8(1.2) and 

291.6(1.2), respectively. The validity of the refinement has, to date, not been confirmed. 

The assignment of fractional occupancies to some sites and mixing of Pd on others can be 

sketchy at best. There are some unusually short cation-cation distances of approximately 3 À 

that raise suspicions, and the phase width, if any, has yet to be established. 
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Introduction 

The chemistry of indium in the reduced oxidation state has demonstrated a 

remarkable diversity. In the alkali-metal binary regime the structures range from simple 

isolated clusters of 3-bonded indium atoms in Naaln,1 networks of 8-bonded indium atoms in 

KIiU,3 and isolated cluster examples such as in Kgln, i.4 When looking past the binary 

systems, two avenues of exploration have been undertaken, one the use of mixed cations, and 

the other the substitution of a third element for indium. The former approach has been used 

successfully in the synthesis ofNaaAzoI^g, A = K-Cs.5 The later approach has been used 

with transition metals to synthesize cluster phases like KglnioHg containing InioHg8" 

(mercury disordered) units,6 and to gain centered clusters like those found in Kgln,oZn and 

Kl0Inl0M, M=Ni, Pd, Pt.7 

This chapter presents another structure in the ternary alkali-metal-indium-transition-

metal system. The title phase is isostructural with Na23In3g^>Zn^ and contains an electron 

count that is intermediate between the known Zn and Hg analogues.8 

Experimental 

The materials and general reaction techniques in welded tantalum tubes have been 

described elsewhere.9,10 An improved method for sample mounting for powder pattern 

measurements was employed. Samples were held between sheets of aluminized polyester 

film by means of a thin centered film of vacuum grease that also served to seal the outer edge 

of the sheets and to prevent decomposition of the air sensitive products.11 All transfers where 

completed in a or He-filled glove-box. Samples of K23ln4o.4(i)Pd2.5i(2) were prepared by 

direct fusion of the elements in welded tantalum tubes followed by heat treatment. 
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Synthesis. The title phase was synthesized by combing stoichiometric amounts of Na 

(Fisher, 99.9%), In (Aesar, 99.99%), and Pd wire (Johnson Matthey, 99.995%) as NasPdIng. 

The resulting mixture was then heated to 800 °C and annealed for two weeks and then 

allowed to radiatively cool. Small black/grey crystals were obtained from the reaction 

mixture where the yield of the title compound was 75-80% and the balance was a 

combination of Nain and In. Attempts to make the phase without Pd present were 

unsuccessful. 

X-ray diffraction. Powder diffraction data from an Enraf-Nonius Guinier camera 

and Cu K«i radiation were used for phase identification. The films were then first compared 

semiquantitative^ with the patterns calculated for phases with known structures. The 

compositions of the products were then estimated visually from relative powder pattern 

intensities, considering the unit cell symmetry and contents as well. 

Several black crystals of K.23lnw.4(t)Pd2.5t(2) were isolated and placed into thin-walled 

capillaries, and checked by Laue photographs. Diffraction data from one specimen were then 

collected at room temperature using a Rigaku AFC6 diffractometer with monochromated Mo 

Kot radiation. Routine indexing of 25 centered reflections gave a primitive hexagonal cell. 

No systematic absences were observed, and the Wilson plot statistics suggested a 

centrosymmetric space group. The space group P6/mmm was chosen, and this assignment 

was confirmed by a refinement carried out with the aid of the SHELXTL package.12 

Attempts to refine the structure in a lower symmetry space group like P6/m gave thermal 

ellipsoids that were unreasonable. The data were corrected for absorption empirically 

according to three i^-scans of strong reflections with different d values. The final residuals 

were R(F)/Rw = 6.2/14.5 % with the largest residual in the AF map of 4.291 e7Â3 located 
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0.55 Â from Na5. Refinement details are provided in tables 1-3 and bond distances are listed 

in table 4. 

Initially, direct methods provided nine peaks with distances appropriate for indium 

atoms, except for one distance for In? that was approximately 1.77 Â to its symmetry related 

position. This problem was caused by the 6-fold rotation axis of the space group. Lower 

symmetry trigonal space groups, like P3 were tried to alleviate this problem, but the 

PLATON software package13 suggested that there were missing symmetry elements that 

when included would give rise to the original P6/mmm assignment. The distances about Inl 

are characteristically 0.15 A shorter than the other indium distances. The peak heights of the 

last three atoms (In7-9) were also a little over half of the heights of the earlier indium atoms 

assigned (In 1-6). All the positions where treated as fully occupied for the first few least 

square cycles. The difference Fourier map revealed all eight of the sodium atoms. When the 

sodium atoms were included in the refinement, the thermal parameters were about twice as 

large for ln7-9 compared to the other indium atoms and the thermal parameters for Inl were 

also larger than average. If the occupancies of the indium atoms were allowed to vary, the 

occupancies of Inl, 7-9 refined to 50-60% with all the other indium atoms, except Inl, 

staying close to 100%. It appeared likely that In7 was half occupied (or incorrectly assigned) 

to avoid the short 1.765(4) Â contacts. This left the question of how much Pd was mixing in 

and where in the structure. It was stated for the isostructural Naz3ln39.8(i)Au3.40(7) that the 

transition metal was mixing in on the Inl-3 sites, while the In7-9 sites remained fractionally 

occupied (i.e. Inl-3 refined with occupancies greater than 100% and In7-9 refined with 

occupancies ranging from 50-60% indicating that Au was perhaps mixing in on the first three 
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positions). The present refinement was then carried out with a mixture of Pd on the Inl site 

and fractional occupancies on In7-9 to achieve the final results. 

Results and Discussion 

Description. The title phase is isostructural to the previously determined 

Na23ln38.4Ziî4.6 and Na23ln39.gAu3.4 phases. The full unit cell of the title phase is shown in 

figure I. The structure can be constructed from three basic building blocks, clusters of Ini2, 

Inis, and an ln2i atom spacer, all of which are interconnected via exo bonds. The first cluster 

type is a 12-bonded icosahedron with D2h symmetry (figure 2a) and is centered on an mmm 

position. It is built up from Inl-3 atoms with some mixing from Pd on the Inl site. The 

cluster is then bonded to four other Ini2 clusters through Inl-Inl bonds, to four Inis clusters 

through In3-In4 bonds, and to four In2, clusters through In2-In5 bonds. The shortest of the 

intercluster distances is associated with the Inl-Inl bonds (i.e. the site with the mixture of 

Pd). 

The second building block is the 15-bonded c/oso-In 15 cluster centered on the 2c 

position that possesses Dj/, symmetry (figure 2b). This cluster is built up from In4,6, and 9 

positions. All of the atoms of the cluster are then exo-bonded to neighboring clusters, In4-

In3 to six Ini2, In6-In8 bonds to three In2! clusters, and In9-In9 to three other In,s clusters. 

The partial occupancy of the apparently 6-bonded In9 site on this cluster is not altogether 

unsurprising, because similar behavior has been noted in other large clusters, the 6-bonded 

closo-Inie in NaglnU.gZn^, the 12-bonded c/ojo-Inl8 unit in Na4qIng0.9Sn9.i,8 and the 

(Ga,Cd)i6 cluster units in NagjsGauCds.g.14 
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The final cluster type is the In;, spacer (figure 2c). This cluster is built up from In5, 

7, and 8 positions. Figure 2c only shows one of two apparent orientations of the spacer. Half 

of the In7 and ln8 positions belong to one orientation and the other half to the second. The 

two differing orientations are shown in figure 3. The ln5 position is common to both 

orientations. The geometry of the cluster can be viewed as two truncated tetrahedra fused on 

one triangular face. It has 18 exo-bonds to 12 ln^ clusters through In5-In2 and 3 In, 5 

clusters (two In8-In6 to each Inis). 

Electronic structure. A detailed analysis of the electronic structure has been done 

previously by Sevov.8 The electrons required for each of the building blocks can be 

determined in the following manner. Each 12-bonded Iniz cluster requires 26 (skeletal) + 12 

(exo bonds) = 38 electrons. Each of the two 15-bonded In,s clusters requires 32 or 34 

(skeletal electrons) + 15 (exo-bonds) = 47 or 49 electrons. The reason for the two possible 

electron counts is that there is a non-bonding orbital available to be filled. The In%i spacer 

has 21 4-bonded atoms requires 21 x 4 = 84 electrons. The sum per unit cell then becomes 

equal to 3 x 38 +- 2 x 47 (or 49) + 84 so that 292 or 296 electrons needed. 

The number of electrons available in Nazjln^ i )Pd2.si m is 2 x (23 + 40.4 x 3 + 2.51) 

= 293.4(6). This number is similar to that obtained for Na23ln39.8(i)Au3.4 and Na23ln3g.4(2)Zn4.6 

which are 291.6(1.2) and 294.8(1.2) respectively. These numbers suggest that the Au 

compound could be balanced electronically while the Pd and Zn examples have extra 

electrons, presumably located on the non-bonding levels of the Inis cluster. 
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Conclusions 

A variety of questions still exist with respect to these materials. In the title 

phase the Nal Ueq is about half that of all the other Na atoms and the correctness of the 

assigned single occupancy is still in doubt. In regard to this feature, there is a short contact 

between Nal and In9 of approximately 3.1 Â. Also the Na5-Na5 separation is only 3.0 Â, 

which is quite low for cation separation. All distances are on par with those reported by 

Sevov. The R factor is also high by modern standards especially when compared to the 

refinements of the isostructural examples (2.8 and 2.7 for the Zn and Au examples 

respectively). The phase width, if any, has yet to be determined for this and other related 

phases also. 

References. 

(1) This research was supported by the Office of the Basic Energy Sciences, Materials 

Sciences Division, U. S. Department of Energy (DOE). The Ames Laboratory is 

operated for DOE by Iowa State University under Contract No. W-7405-Eng-82. 

(2) Sevov, S C.; Corbett, J.D. J. Sol. St. Chem. 1993,103, 114. 

(3) Bruzzone, G. ActaCryst. 1969, 25B, 1206. 

(4) Sevov, S C.; Corbett, J.D. Inorg. Chem. 1991,30,4875. 

(5) Sevov, S.C.; Corbett, J.D. Inorg. Chem. 1993, 32, 1612. 

(6) Sevov, S.C.; Ostenson, J.E.; Corbett, J.D. J. Alloys Comp. 1993, 202, 289. 

(7) Sevov, S C.; Corbett, J.D. Inorg. Chem. 1993,32,1059.; b.) Sevov, S.C; Corbett, 

J.D. J. Am. Chem. Soc., 1993,115, 9089. 

(8) Sevov, S.C. Ph.D. Dissertation, Iowa State University, 1993. 



www.manaraa.com

119 

(9) Corbett, J.D. In Chemistry, Structure and Bonding in Zintl Phases and Ions; 

Kauzlarich, S., Ed.; VCH: New York, 1996; Chapter 3. 

(10) Dong, Z.-C.; Corbett, J.D. J. Am. Chem. Soc. 1993,115, 11299. 

(11) Klem, M.T.; Vaughey, J.T.; Harp, J.G.; Corbett, J.D. Inorg. Chem. 2001, 40, 7020. 

(12) Shelxtl; Bruker AXS, Inc.; Madison, WI, 1997. 

(13) A. L. Spek (2001) PLATON, A Multipurpose Crystallographic Tool, Utrecht 

University, Utrecht, The Netherlands. 

(14) Charbonnel, M.T.; Belin, C. Mat. Res. Bull. 1992, 27, 1277. 



www.manaraa.com

120 

Table 1. Details of data collection and refinement for Naza In4o.4( t )Pdz.5 i (2) 

Formula 

Formula Weight 

Crystal system, space group, Z 

Unit cell dimensions (A) 

ftA3) 

Calculated density, Mg irf3 

Diffractometer 

Octants, 2flmax (deg) 

Observ. refl. (> 2a 0 

unique 

Absorp. coeffic. (Mo Ka, mm"1) 

Rcl. trans. coefT. range 

variables 

R. 

Largest AF, e7À3 

GOF 

Nayln40 4(i)Rd2.5|(2) 

1139.91 

hexagonal, P6/mmm, 2 

16.233(2) 

16.233(2) 

15.852(3) 

3617.4(10) 

4.186 

Rigaku 

±h.±k. 1:55° 

9128 

1693 (R;nl = .1793) 

11.053 

0.4881 - 1.0000 

87 

0.0620,0.1452 

4.29 (0.55 A from Na5) and -3.98 (1.52 A from Na2) 

1.133 

"R = E||F0| - |Fc||/E|Fo|; Rw  = [Ew(|F0| - |Fc|)2/Ew(F0)2],/2; w = of1 .  
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Table 2. Refined atomic positions (xlO4) forNa23Ïn4o.4(i)Pd2.5i(2) 

X y z Ueq occupancy 

Na?iIn4n4fi\Pd? 

Inl 1611(2) 4937(2) 5000 30(1) 
58.1(3)% In + 
41.9%(3) Pd 

In2 3447(1) 0 4047(1) 32(1) 

In3 5526(1) 2x 6549(1) 28(1) 

In4 6028(1) 2x 8154(1) 23(1) 

In5 1872(1) 0 3114(1) 21(1) 

In6 2239(1) 2x 9058(1) 29(1) 

In7 628(1) 2x 0 23(1) 52.0(8)% In 

In8 1239(1) 2x 0.1519(2) 29(1) 59.8(8)% In 

In9 5536(2) 2x 0 44(2) 58(1)% In 

Nal 1/3 2/3 0 17(2) 

Na2 0 0 1906(16) 35(6) 

Na3 2072(3) 2x 6991(8) 34(3) 

Na4 1/3 2/3 6269(13) 37(4) 

Na5 0 0 4049(9) 30(3) 

Na6 3801(6) 0 1901(7) 38(3) 

Na7 1280(6) 2x 5000 40(4) 

Na8 2954(10) 0 0 47(4) 
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Table 3. Anisotropic displacement parameters (Â2 x 103) for NazalrtMMa)Pd2.si(2).a 

Na2lln40.4f 1 lPd2.5U2t U„ u22 U33 U23 U,3 Ul2 

Inl 25(1) 45(1) 28(1) 0 0 23(1) 

In2 24(1) 53(1) 27(1) 0 -3(1) 27(1) 

In3 29(1) 29(1) 27(1) -5(1) -2(1) 15(1) 

In4 19(1) 18(1) 32(1) -4(1) -2(1) 9(1) 

In5 17(1) 15(1) 31(1) 0 -4(1) 7(1) 

In6 3?(l) 18(1) 26(1) KD KD 9(1) 

In7 24(2) 16(2) 25(3) 0 0 8(1) 

In8 29(1) 24(2) 32(2) 10(1) 5(1) 12(1) 

In9 51(3) 23(3) 48(4) 0 0 12(1) 

Nal 15(6) 15(6) 19(11) 0 0 8(3) 

Na2 41(9) 41(9) 22(14) 0 0 21(4) 

Na3 24(4) 17(4) 58(7) 1(4) 1(2) 9(2) 

Na4 25(5) 25(5) 61(12) 0 0 13(3) 

Na5 34(4) 34(4) 21(7) 0 0 17(2) 

Na6 35(4) 43(6) 37(7) 0 -17(4) 21(3) 

Na? 26(5) 46(9) 55(11) 0 0 23(5) 

Na8 54(7) 98(14) 5(7) 0 0 49(7) 

= exp(-27t2(h2 a2 U11 +  . . .  +  2  h k a *  b' U12)) 
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Table 4. Atom Separations in (À) for Na23ln4o.4(i)Pd2.5i(2). 

Atom pair Distance Atom pair Distance 
Inl - Inl x2 2.785(4) In6- In6 2.988(4) 
Inl - Inl x2 2.820(5) In6 - In8 2.955(3) 
Inl - In2 x2 2.940(2) In6 - Nal x2 3.421(2) 
Inl - In3 x2 2.938(2) In6 - Na3 3.30(1) 
Inl - Na3 x2 3.62(1) In6 - Na6 x2 3.568(5) 
Inl - Na4 x2 3.45(1) In6 - Na8 x2 3.545(3) 
Inl - In? 3.62(2) 

In? - In? x2 3.057(7) 
In2 - In2 3.022(4) In? - In? x2 1.765(4) 
In2 - In3 x2 3.071(2) In? - In8 x2 2.958(4) 
In2 - In5 2.953(2) In? - Na2 x2 3.50(2) 
In2 - Na3 x2 3.390(7) In? - Na8 x2 3.38(2) 
In2 - Na? x2 3.415(6) 

In8 - In5 x2 3.070(3) 
In3 - In3 2.957(3) In8 - In6 2.955(3) 
In3 - In4 2.910(2) In8 - In? x2 2.958(4) 
In3 - Na3 x2 3.462(5) In8 - Na2 3.538(5) 
In3 - Na4 3.238(3) In8 - Na3 3.32(1) 
In3 - Na6 x2 3.466(9) In8 - Na6 x2 3.653(9) 

In8 - Na8 x2 3.463(8) 
In4 - In4 x2 3.111(3) 
In4 - In6 x2 3.036(2) In4 - In9 3.236(3) 
In4 - In9 3.236(3) In9 - In9 3.016(9) 
In4 - Nal 3.433(2) In9 - Nal 3.178(5) 
In4 - Na3 x2 3.583(9) In9 - Na8 x2 3.64(2) 
In4 - Na4 3.48(2) 
In4 - Na6 x2 3.485(6) Na2-Na5 3.40(3) 

In5 - In5 x2 3.039(2) Na3 - Na6 x2 3.583(9) 
In5 - In8 x2 3.070(3) 
In5 - Na2 3.59(1) Na5 -Na5 3.02(3) 
In5 - Na3 x2 3.540(8) 
In5 -Na5 3.382(6) Na6 - Na8 3.31(1) 
In5 - Na6 3.67(1) 
In5 - Na? x2 3.491(5) Na? - Na? x2 3.59(2) 
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Figure 1. Structural view of Na^In^^Pd^-,,. The In/Pd and Na atoms are 
represented by grey and white spheres respectively. The In12, In,,, and In21 

clusters are drawn with thicker white, black, and grey lines respectively. 
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Figure 2. The three structural building blocks of Na23ln404(l)Pd2 5l(2). A.) 12-bonded icosahedron, B.) 15-
bonded closo-\rit5, C.) 18-bonded 21 atom spacer in one of two possible orientations. All atoms contain exo-
bonds to other clusters except for the triangular waist in the In2l spacer. 
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Figure 3. The refined formation (right) with D6h symmetry is generated by superimposing two 21-atom 
spacers with two possible orientations. The atoms in the two end hexagons are common for both orientations 
while the rest belong to one orientation. 
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FUTURE WORK 

A large amount of research remains possible in the ternary alkali metal (or alkaline-

earth metal)/lead/main group element systems. The use of mixed cations has not been 

effective in the alkali-metal-Pb systems as only one known example has been produced, 

CsioK6Pb36.1 Other ternaries may exist in the alkali-metal/tetrel/main group systems and 

more work should be done to determine if Ge or Sn may be suitable tetrel elements to 

explore. Their smaller size makes cluster separation easier with the fewer number of cations 

generally available. With this approach, the number of known Zintl phases in non-transition-

metal containing heteroatomic clusters may be extended. 

Further work is necessary with K.23lri4o.4(i)Pd2.5i(2) along with the isostructural 

Na23ln38.4(2)Zn4.6 and Na23ln39.8(i)Au3.4 to answer some of the lingering questions that remain 

about their structure refinements. The search for lower symmetry space group possibilities 

and a superstructure may be greatly aided by the acquisition of CCD data sets. 

Explorations into the Ba/Sb/Pb system have shown an unknown phase present in the 

powder pattern, but no successful single crystal refinement has been successful as of yet. A 

few crystals have been isolated and tentatively indexed to a body-centered tetragonal cell (a 

= 12.4976, c = 18.2022 Â), but refinements ceased at a point that leaves approximately 22 e 

/Â3 peaks left in the Fourier map 0.5 Â from a neighboring Pb atom left. Further work could 

include a search for lower symmetry and/or a superstructure. 
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